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Abstract

Deformable Models for Volume Feature Tracking

by

Gregory James Klein

Doctor of Philosophy in Vision Science

University of California, Berkeley

Professor Jitendra Malik, Chair

Conventional three dimensional medical imaging devices have made possible the rou-

tine visualization of biological tissue acquired as a sequence of image volumes over time.

Because biological tissue is rarely static, the accurate registration of features in two vol-

umes from an image sequence is a common requirement for analysis of these data. This

registration task can be difficult, since tissue can bend and stretch over time, and a motion

description capturing the non-rigid deformation can be quite complex. One way to charac-

terize the non-rigid deformation is by means of a vector field called a motion field, which

describes the relative displacement of each voxel, and thus establishes a correspondence

between any set of features in the two volumes. A field such as this can adequately describe

any non-rigid deformation seen in biological tissue; however, algorithms designed to esti-

mate it are often confounded by the large dimensionality of the problem. Given the size of

conventional medical imaging data sets, the total degrees of freedom represented by the

number of independent vectors in the motion field is tremendously large.

This dissertation focuses on incorporating elastic material models into a motion esti-

mation algorithm so that the deformation of tissue in a medical imaging data set can be

more accurately described. The research has been motivated by a problem seen in the ac-

quisition of cardiac Positron Emission Tomography (PET). Because the heart moves dur-

ing a PET acquisition, data are often distributed into different time frames, each capturing

a specific phase of the cardiac cycle. This reduces motion-induced blur; however, the in-

dividual time frames are quite noisy, and need to be recombined in some manner to im-

prove image quality. Since the shape of the heart is different in each time frame, the data
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may not be simply added together, but first must be warped to match a common reference

shape. Warping is achieved by using an optical flow-based motion algorithm to estimate

the mapping between corresponding voxels in a source and a reference volume. The mate-

rial model serves to reduce the large domain of possible motion fields, constraining the im-

age data to deform as if it were a physical piece of elastic media undergoing stress from an

external force.

The main result of this dissertation is that by better modeling the material properties of

tissue within the field of view in a dynamic cardiac PET acquisition, a better estimation of

the motion field describing the deformation can be obtained. The motion estimation algo-

rithm is unique from past approaches in that it uses a non-uniform model allowing large-

displacement deformations to describe the elastic properties of a cardiac volume. It also

uses a forward sampling scheme appropriate for recombination of voxels into a composite

motion-corrected volume. Results indicate that this motion field can be used to produce a

composite data set with less motion blur and improved contrast to noise characteristics.
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Chapter 1

1Introduction

1.1. Introduction

Positron Emission Tomography (PET) is a three-dimensional (3D) imaging technique

which allowsin vivo visualization of a biologically active radiolabeled tracer distribution

within the body. Analysis of cardiac function is a frequent application of PET. Determin-

ing the viability of cardiac tissue in a compromised heart via metabolic measures or blood

flow, measuring heart wall motion or cardiac contractile efficiency, and characterization of

the cardiac sympathetic nervous system are all possible means of studying the heart and

characterizing its health with PET. However, just as an image may be blurred by an opti-

cal camera photographing a moving scene with too slow a shutter speed, so too may car-

diac images acquired via PET be blurred by motion due to the fact that the typical time to

acquire a cardiac PET image is much longer than the time for one cardiac cycle. This

motion blur degrades the diagnostic potential of cardiac PET data.

Peak spatial resolution of conventional whole body PET scanners is nearly 3 mm full

width at half maximum (FWHM); however, motion of the heart due to the cardiac cycle

can be considerably larger than that distance. Between end diastole and end systole, the

base of the heart typically moves 9-14 mm towards the apex, and the walls of the left ven-

tricle thicken at end systole by about 6 mm from an end diastolic thickness ranging from

7.5 to 9.3 mm in a normal human [77,67,53]. Blur due to cardiac motion is therefore one

of the principal factors limiting high spatial resolution of cardiac PET image features.
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One method to combat this motion blurring is to use a type of data acquisition called

gated cardiac PET. Here, the cardiac cycle is monitored using an electrocardiograph

(ECG) during the acquisition, and tomograph data are directed into different storage loca-

tions based on the time since the last R-wave occurrence. By summing these events into

the same time frames with respect to the R-wave over all heart beats in an acquisition, a

group of reconstructed time frames, or gates, can be obtained which capture the motion of

the heart as a set of “freeze frames.” An unfortunate effect of distributing the data into

many different time frames is that the statistical quality of the reconstructed volume suf-

fers. Though the gating has removed most of the motion blur, the individual gates are so

noisy that their diagnostic quality is often no better than the blurry ungated data. One way

to improve the statistical quality of the reconstructed images in a gated study is simply to

increase the total acquisition time. In this way, the number of tomographic events in each

gate can be made equal to the total number of events in a nongated study. Unfortunately,

this tactic is usually infeasible because of short-lived imaging radiotracers or because of

the patient’s inability to remain stationary in the scanner for extended periods of time. An

alternate approach for improving image statistics is to sum the individual gates to form a

composite image, but in order to do so without reintroducing the motion-induced blur, a

correspondence must first be found between the voxels in each data set.

For two volumetric data sets representing an object undergoing a simple rigid-body

motion, the correspondence problem amounts to finding the six parameters of translation

and rotation that best align the features in the two data sets. Motion of the heart through-

out the cardiac cycle, however, is not rigid. The walls of the heart bend and stretch as an

elastic body during the cardiac contraction. Therefore, in order to relate each voxel’s posi-

tion in one data set to its corresponding voxel in another, a dense 3D vector map at the

same resolution of the voxel size is required to describe the non-rigid deformation. This

vector map is often called the motion field, or the flow field, which describes the non-rigid

mapping. Though this map can adequately describe any non-rigid motion, it represents a

tremendous increase over the rigid body case in the degrees of freedom allowed to

describe the deformation.

The basic motion compensation scheme that is desired is depicted schematically in

Figure 1-1. Here we see a single slice through a cardiac volume at end diastole and at end
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systole. It is obvious from these images that the shape of the heart changes dramatically

between these two time frames. We would like to select one of these volumes as a refer-

ence, and then warp the other data set, which we’ll call the source volume, so that the

shape of the heart in the deformed source volume matches the reference. The warping

consists of two parts. First the motion field must be computed that defines the correspon-

dence between each voxel in the source and reference volumes. Second, the motion vec-

tors must be used to displace each voxel in the source volume and then recombine them in

some manner to calculate the deformed volume. Once we have deformed this volume, the

two volumes can then be summed together to form a composite volume with less motion

blur and better contrast to noise characteristics.

Figure 1-1. Cardiac Motion Compensation Scheme

Cardiac motion is an elastic, non-rigid motion. To compensate for cardiac motion, sep-
arate images are acquired in a gated PET study from different phases of the cardiac
cycle. To sum the different phases together, they must first be deformed to match a
common reference phase. This establishes the correspondence between voxels repre-
senting matching portions of cardiac tissue. Once the correspondence is found and the
shape of the heart matches in each deformed and reference volume, they may be
summed together to form a composite data set with better contrast to noise properties.

End Diastole Reference Volume

End Systole Reference Volume End Systole Deformed Volume

Composite Volume

Deformable
Motion
Algorithm

+
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The focus of this dissertation is the technique for performing the step that is italicized

in the figure. That is, this dissertation will describe a technique used to estimate the

motion field enabling a non-rigid deformation of a cardiac PET volume. The motion field

will then be used to produce a motion compensated volume that may be subsequently

added together as part of a deblurred composite volume. Though a gated cardiac sequence

typically consists of many time frames, this dissertation will only focus on the combina-

tion of two of the frames to demonstrate the principle of non-rigid motion compensation.

A source volume, typically the heart at end systole, will be deformed to match a reference

volume, typically the heart at end diastole. The deformed source will be then summed

with the reference to produce a composite volume with better contrast to noise character-

istics. To limit the degrees of freedom in the motion field, the algorithm will make use of

known physical properties of the cardiac tissue. This will prevent estimation of motions

that would be physically impossible in the real world. The algorithm will be tested on

phantoms modeled to mimic specific known characteristics of cardiac PET data, as well

as on real data obtained from clinical cardiac PET studies.

1.2. Contribution of this Dissertation

Deformable motion algorithms that operate on density images have been in existence

for over ten years now. Motivated primarily by the availability of high resolution 3D data

sets acquired from medical imaging devices such as computed tomography (CT), mag-

netic resonance imaging (MRI) and PET, the deformable motion algorithms have become

a necessary component of an analysis if one desires to compare elastic biological tissue

imaged at different times, or to compare the image data from different subjects, which

naturally has size and shape variations.

A common problem with the estimation of 3D deformable motion is how to properly

deal with the huge dimensionality of the estimation problem. If one wants to warp the

voxels in one volume to match another, there are nearly countless ways to do this and

obtain an exact match. A simple example of this is seen frequently in the world of special

effects for television and movies. Tigers have been smoothly “morphed” into automo-

biles, human faces have been transformed into “liquid metal,” and yet though we say that

the voxels from one image have been warped to match the other, these warps do not repre-
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sent a deformation that is physically possible. For transformations of the volumes

acquired by medical imaging devices, we do not desire to use the freedom of possible

motion fields used in the special effects community. It is known that the deforming

images in cardiac PET actually correspond to physically deforming media. Therefore, use

of a physical model to constrain the set of possible motion fields makes sense. The pri-

mary contribution of this dissertation is development of an appropriate physical model for

the motion seen in cardiac PET data. The innovative aspects of the dissertation can be

summarized as follows:

• Acknowledging that the objects in the PET scanner’s field of view do not have uniform

material properties, we develop a piece-wise isotropic elastic material model. Past

techniques have used material models, but the models were assumed to be isotropic.

• Deformations seen in cardiac tissue are large. Past techniques using ideas from mate-

rial models have used what is called the infinitesimal motion assumption. This assump-

tion may be appropriate for materials like steel, but they induce error for modeling the

deformations seen in the heart. We will investigate the use of afinite displacement

strain energy model that is more appropriate for describing large-scale deformations.

• The aspect of applying a deformable motion algorithm to decrease motion blur and

improve overall image quality in cardiac PET is unique. Most past motion estimation

techniques have been used to deform data sets so that corresponding pieces of tissue

may just be compared. This work takes a second step to use the estimated flow field as

a motion compensation technique.

• Because the motion field is being used to produce a warped image volume for the pur-

pose of subsequently forming a composite data set, aforward warping scheme has

been used to deform the source volume according to the motion field. This Lagrangian

description of the motion field insures that every voxel in the source data set contrib-

utes to the deformed volume. Past techniques have used motion fields defined in an

Eulerian sense, and have usedbackward warping schemes that had no such guarantee.

The work presented here is most closely related to 3D extensions of Horn’s optical

flow algorithm, which made the assumption that corresponding voxels should have their
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intensities conserved between two images in a motion sequence, and that the “optical flow

field” describing the motion should be smoothly varying, just like the surfaces of the

objects in the images are smoothly varying. Song and Leahy [82] were among the first to

extend the optical flow algorithm to 3D, where they applied it to the motion estimation

problem in cardiac ultrafast CT data sets. A separate body of work devoted to the warping

of 3D brain data sets is also closely related to the approach explained in this dissertation.

The brain warping algorithms make use of continuum mechanics and present material

models to regularize the motion field estimation which are similar to those used in this

work [7,14,92].

1.3. Summary of Results

The take-home message from this dissertation is that by more accurately modeling the

elastic properties of the materials being imaged in cardiac PET, the motion estimation

algorithm can be made more accurate. The estimated motion field can be used to compen-

sate for the motion-induced blur in cardiac PET, and produce corrected images with less

blur and better statistics.

It was found that use of a finite displacement strain energy model produced improve-

ments over the strain energy model assuming infinitesimal motion. However, an even

larger effect is the difference between the piece-wise isotropic model verses the com-

pletely isotropic model. In other words, it seems more important to model fairly incom-

pressible cardiac tissue differently from the blood pool inside the heart than it is to model

cardiac tissue elasticity differently than the elasticity of a material like steel. Also, the use

of a forward sampling technique to guarantee the contribution of every voxel from a

source volume during a deformation is an improvement to a backward sampling tech-

nique, though this becomes less important if the true motion field represents an incom-

pressible deformation.

Finally, it should be noted that though the discussions in this dissertation have been

targeted towards the modality of PET, most of the concepts described here are equally

applicable to the deformation of data sets acquired with other imaging modalities.
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1.4. Dissertation Outline

This dissertation is organized as follows. After the introduction found here, a compre-

hensive literature review is given in Chapter 2.

Chapter 3 explains the characteristics of typical gated cardiac PET data. The basic

principles of PET acquisition and reconstruction are outlined here so that the reader can

appreciate the logic that is used for assumptions about the image model. Examples of typ-

ical cardiac PET data are also shown in order to motivate the anisotropic strain model

used in later chapters. It also should give the reader an understanding of some of the prob-

lems in cardiac PET imaging, and why this deformable motion algorithm is warranted.

Next, in Chapter 4, the general formulation for the deformable motion algorithm is

stated. In this chapter are found most of the symbol definitions and other terms that are

required for later discussions. The basic structure of the motion algorithm is outlined in

terms of a similarity measure between the reference and deformed volumes and a regular-

ization function for the motion field. Together, these criteria serve as a cost function

describing a figure of merit for the overall motion estimation problem. A justification of

the chosen similarity measure is next given. Then, past techniques used to regularize

motion fields in optical flow-like problems are discussed, and we present a simple version

of the linear elastic material model used in this work. A detailed discussion of the material

model is reserved for Chapter 6. Two minimization methods are also presented in this

chapter. The first of these is based upon the calculus of variations. It is used to minimize a

version of the cost function based on the small motion assumption, which can be

expressed in a quadratic form. The second minimization technique is a nonlinear succes-

sive over-relaxation technique. Though slower than the approach using the calculus of

variations, this technique can be used to minimize more general cost functions.

Chapter 5 details some of the subtleties that can be encountered in the sampling pro-

cess during a volume deformation. The motion vectors themselves are just one part of a

volume deformation. The other component is the sampling technique which uses these

vectors to displace each source voxel into a deformation volume. The chapter compares

the forward sampling method here with techniques that have been used by other authors.

Chapter 6 gives a detailed explanation of the elastic material model used in the
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deformable motion algorithm. Because the regularization constraint used by the algorithm

is modeled from the characteristics of physically deforming elastic media, the relation of

stress and strain in isotropic and nonisotropic media is explained, as well as how these

quantities are used to calculate material strain energies appropriate for modeling cardiac

tissue.

Next, Chapter 7 pulls together the concepts that have been explained in Chapters 4, 5

and 6, and summarizes them while presenting the final form of the deformable motion

algorithm. It also gives some more of the implementation details, such as the multi-resolu-

tion approach that is used.

Results are presented in Chapter 8. A simple isotropic deformable phantom is first

used to clearly demonstrate the behavior of the algorithm with respect to material model

parameter choices, and how mismatches between the data and the chosen material param-

eters can affect the accuracy of the estimated motion. The Results chapter makes use of

two anthropomorphic phantoms to evaluate the accuracy of the motion algorithm. Results

using data from actual cardiac acquisitions are also presented.

A discussion of the results and plans for future work is found in Chapter 9.

Finally, an appendix is provided which gives details of the calculus of variations, and

of the conjugate gradient minimization technique, both of which were used by the motion

estimation algorithm. A basic explanation of these techniques is given, as well as an

example of how they are used explicitly in this work.
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Chapter 2

2Related Work

2.1. Deformable Model Applications

Two general applications in the medical imaging community have generated consider-

able interest in deformable volume models. As the introduction in this document suggests,

one application is the characterization of cardiac motion. For the PET application here,

the motivation is to obtain a mapping which brings into correspondence those voxels from

two different time frames representing the same cardiac tissue. Once the correspondence

has been made, the image data may be added together to provide a composite image.

Another motivation for the characterization of cardiac motion is the study of the motion

itself, since the motion field can be used to study cardiac mechanics or indicate abnormal

heart function based on wall motion, thickening or strain measurements [53,33,85,9].

The other general application which has driven research in deformable volume models

is the warping of brain image data sets to match the shape of a standardized atlas.

Recently available 3D imaging techniques, such as Magnetic Resonance Imaging, X-ray

Computed Tomography and PET, provide high resolutionin vivo data sets that allow rou-

tine visualization of the brain anatomy and physiological function. Because of natural size

and shape variations between subjects, the brain data sets must be stretched or otherwise

deformed to match the shape of a common atlas before comparisons can be made across

subject populations.

Though the cardiac and neuroanatomical applications appear quite different, nearly
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every technique employed to calculate the deformations for the two applications has been

based on two general cost functions. One cost function is based on some similarity mea-

sure between the reference volume and the deformed source volume. The other cost mea-

sure is usually based on a smoothness measure of the motion field. A smoothness

constraint is imposed because there are often numerous deformation fields that could pro-

duce a warped volume which is similar to or even exactly matching the reference volume;

however, most of these deformations represent physically unrealizable warps. Therefore,

an acceptable solution usually is a balance between the forces driving the similarity mea-

sure and the smoothness constraint. The similarity measure is the driving force that tries

to make the source image deform until it matches the reference, and the smoothness con-

straint is the restraining force that keeps the motion field varying as if it represented the

deformation of a physically deforming piece of elastic media, such as a piece of rubber

undergoing some stress. The principle differences between the approaches lie in first what

features are used to establish a similarity measure between the volumes; and second how

the smoothness constraints are implemented.

Similarity measures are generally expressed in terms of either manually or automati-

cally detected image features, or directly in terms of the voxels themselves. One of the

simplest feature types that have been used as a similarity measure by many matching

algorithms is a sparse set of paired control points. Typically, these points are specified by

trained manual operators [30,11,24]. Alternately, the voxel data may be used directly as

its own feature space. Common difference measures operating directly on the voxel data

include the squared difference between individual voxels [103], uniformity of ratio [99],

mutual information [57], or cross correlation [7]. Voxel-based measures have the advan-

tage that they are usually automatically implemented, but they can be computationally

intensive because they measure the difference ateveryvoxel regardless of whether it is a

relevant feature. As another approach, a dense similarity measure that can be quickly cal-

culated may be used, such as the “daemon” technique of Thirion [90]. A compromise

between manually specified points and the processing of every voxel may be obtained by

preprocessing the volumes so that features such as edges, ridge lines [55,91,26], surface

distance [64] or surface curvature [79,2,45] are used. These techniques attempt to extract

the attributes of the data that are most useful for matching, although, in some cases it may
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be difficult for a completely automatic preprocessing technique to extract features without

destroying at least some potentially useful matching information.

Smoothness constraints can be classified somewhat by considering the total degrees of

freedom allowed. At one end of the spectrum, the deformation field could be limited to six

global rigid body motion parameters and three scale parameters. At the other end, the

motion field could be defined by an independent vector at each voxel that links the posi-

tion of that voxel to its corresponding location in the deformed volume. Smoothness con-

straints in this latter, high dimensional case are usually implemented as a function of the

differential properties of this flow field.

2.2. Optical Flow Based Work

The algorithms in this dissertation are most closely related to works which find their

roots in the two dimensional optical flow literature. In these bodies of work, a dense flow

field is calculated by considering voxel intensity difference as a similarity measure. Horn

[39] was one of the first to develop an optical flow algorithm that calculated the 2D vector

field describing the motion between corresponding voxels in two images. The technique

relied on an image matching constraint assuming corresponding pixels would have similar

grey values in the two images, and a motion field smoothness constraint. The smoothness

constraint was based on the assumption that objects in the images have continuous sur-

faces which induce a smoothly varying motion field.

Just as the work in this dissertation recognizes that elastic properties are not uniform

in a cardiac PET volume, so too have other authors in the 2D optical flow world recog-

nized that not all surfaces are continuous, and that motion fields describing discontinuous

surfaces would violate a uniform smoothness constraint. To deal with discontinuous sur-

faces, some authors have used modified smoothness constraints that would not penalize

discontinuities in motion fields that corresponded to surface boundaries. For example,

Nagel [65] and Ghosal [35] investigated nonuniform smoothness constraints based on

what they called an “oriented” smoothness criterion.

Similar works in the 3D deformation world parallel the formulations used by the 2D

image algorithms. Fitzpatrick [27] demonstrated purely geometrical image transforma-

tions exist that have the same effect on the image as does the physical motion of the object
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being imaged for 3D density images, such as those found in MRI and PET imagery. Song

[82,83] used this information and a direct 3D extension of the Horn algorithm to calculate

the motion field in ultrafast computed tomography (CT) images of the heart. Zhou [103]

used a similar formulation to calculate larger deformations in CT images of deformed

asphalt test structures. Both these techniques relied upon a voxel matching constraint as

the driving force to the deformation. A simple smoothness constraint penalizing the

square of the components of the flow field gradient was combined with an incompressibil-

ity constraint on the motion field to restrict the set of possible particle deformations. An

analysis of the relative effectiveness of these constraints may be found in [36].

Bajcsy and others [7,21,34,60] were among the first to incorporate a more realistic

elastic material model as a regularization constraint. Though they used their deformation

technique to match 3D volumes of brains from different people, the brains appeared simi-

lar enough so that a material model of continuous media gave acceptable results. The lin-

ear elastic model assumed infinitesimal displacements, and since the deformations

required to match different brain data sets can be quite large, it was a simplifying approx-

imation to the actual material being imaged. Christensen [15,14] tried to overcome this

problem by introducing a viscous fluid model capable of tracking large deformations. He

used this technique to match largely differing brain data sets from different patients.

Other authors have used different similarity measures than voxel matching while

retaining the high dimensionality of the motion vector field to describe the deformation.

Davatzikos [22,23] made use of curvature matching and a deformable surface model to

first register the cortical surface of a subject with a reference brain. This surface then

served as the driving force to derive a 3D elastic map, using a similar linear elastic model

as Bajcsy. Davis [24] also looked to physically based elastic constraint models, but used a

sparse set of 20 manually identified landmarks to drive the deformation instead of voxel

similarity measures. A similar approach was used by Thompson [92], who used a set of

landmarks to fit a surface model called a Chen surface. The surface model was subse-

quently used to drive a smooth deformable sampling of the voxel data set. This technique

produced deformations of brain data sets with impressive results.
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2.3. Simple Regularization Constraints

Material model based algorithms appear as elegant solutions to deformable motion

problems, however, they are computationally intensive because of the large dimensional-

ity of the motion field solution set. Essentially, they make use of properties from real

world elastic materials that enforce a smooth deformation of some 3D data set. This is

necessary because without such constraints, nearly any arbitrary volume can be warped to

match voxels in another volume in many ways. For warping brain data sets from different

patients, it is known that the two brains are simply not the same piece of matter that has

been warped. Rather, they are similar enough that a linear elastic or viscous fluid model

can be used to approximate the required smooth deformation. However, there are a num-

ber of other, perhaps simpler, smoothness constraints that could similarly obtain a suitable

deformation. For these reasons, a number of researchers have found success in the brain

warping community using simpler models.

One of the simplest models is the nine-parameter conventional “Talairach” linear

model [86], which allows three scaling parameters in addition to the six rigid-body regis-

tration parameters [30,70,17]. Simple global or piece-wise global models like these [61]

or variants which allow affine [37,80] low-dimensional global polynomial or spline defor-

mations [100,4,10,26] can be quite successful at matching data sets from different patients

without gross anatomical abnormalities. These low-dimensional deformation models have

been used extensively to register PET brain data sets for subsequent statistical analyses.

Because relatively few parameters are required to specify the deformation, most of these

techniques relied on manually specified landmarks. Global linear models have also been

combined with local spline-based techniques with excellent results [62,93,32,31].

2.4. Miscellaneous Cardiac Motion Tracking Techniques

Because the shape of the heart is considerably simpler than the convoluted shape of

the brain, many researchers have made use of this fact by includinga priori parametri-

cally described shape information in a deformable heart model. Cohen [16] used a

deformable surface model inspired by the work of Terzopoulos’ active contour, or “snake”

model [46,89] to first detect and then track deforming cardiac surfaces. Parametric surface

models based on superquadrics [8,13,88,92], spherical harmonics [56], polar transforma-
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tions [25], or probabilistic models [84] have all been used to assist in the segmentation

and tracking of the cardiac surface. Finite element models of varying detail have also been

used to describe the motion of the heart [71]. Some go as far as mapping the cardiac mus-

cle fiber direction and use sophisticated material stress/strain models to predict the motion

[59,95,42,66,20,43]. These models, though computationally intensive, can model the

motion of the heart extremely well.

Finally, a considerable amount of work in deformable volume models has been the

result of imaging techniques specifically designed to study cardiac motion. MRI tagging

is one such technique. With this type of imaging, a spatially varying pattern, or tag, is

induced in the data at the start of each cardiac cycle. Motion of the tissue after each tag

application is revealed by tracking the tag pattern [102,6]. Several methods have been

developed to track these tags [73,101,1,74,67]. Another MRI technique called phase con-

trast MRI, which produces images of cardiac tissue velocity [69], has recently emerged as

a technique to study heart motion, and has spawned a variety of deformable modeling

techniques which attempt to characterize the cardiac motion [18,58]. Techniques such as

these differ considerably in the feature mapping component of the deformable model

algorithm, but they share much in common with the techniques used to constrain the solu-

tion set of allowable motions.

2.5. Perspectives on Related Work

An optical flow-based technique is chosen for the application of motion compensation

in cardiac PET for a number of reasons. The technique naturally results in a dense estima-

tion of motion vectors that can be used to describe the motion of every voxel in a source

data set without need for interpolation. Use of the voxel data as a similarity measure

instead of manually defined or automatically detected image features reduces the require-

ment for image preprocessing, and avoids the potential problem of a feature detection

algorithm throwing away useful data too quickly.

In terms of computational requirements, the estimation of a dense motion vector field

at the same resolution of the image data set makes this a more expensive technique than

motion estimation algorithms based on a simplified parametric motion model, such a lin-

ear, affine or polynomial warp of the data. On the other hand, the dense motion field is
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much more capable of describing general deformations, and investigations of more com-

plex motion types are possible. At the other end of the spectrum, because the algorithm

described in this thesis requires little image preprocessing and object recognition, it is

considerably simpler than the detailed finite element models used by Nielsen [66] and

others to describe cardiac deformations.
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Chapter 3

3Imaging Model

Since this work exploits the properties of cardiac data imaged through PET in an

effort to correct for motion, it is necessary to understand at least the fundamental princi-

pals involved in obtaining a gated cardiac PET reconstruction. Positron Emission Tomog-

raphy (PET) is a technique used to image radioactive tracers. The tracers are designed so

that their chemical properties are nearly identical to naturally occurring compounds exist-

ing in the body. They can therefore be used to tag some biochemical process of interest,

such as metabolism, ligand-receptor interactions or blood flow. A commonly used tracer

in cardiac studies is18F-fluorodeoxyglucose (FDG). This compound is a glucose analog

that indicates metabolic uptake of glucose by myocardial tissue in walls of the heart. In a

typical FDG cardiac study, the tracer is administered intravenously a short time before the

study is begun. As the body metabolizes glucose, the FDG is taken up by the tissue and

remains trapped there, while the remaining compound in the bloodstream is washed out

relatively quickly. PET data are usually acquired after the tracer has cleared the blood-

stream so that the only radioisotope in the scanner’s field of view is that which is

“trapped” in the tissue. In the case of cardiac imaging, the left ventricle uses proportion-

ately much more glucose than other nearby tissue does, so that this object is the prominent

feature in a reconstructed image volume. Seen in Figure 3-1, the left ventricle appears in a

transverse slice through the torso as a cup-shaped object far brighter than any adjacent tis-

sue, including the right ventricle or other portions of the heart.
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3.1. Tomography - PET Image Reconstruction

All radioisotopes used in PET decay by emitting positrons. These positrons travel a

very short distance (typically less than 5 mm) from the decay site and then annihilate as

they meet an electron, forming two 511-keV gamma rays that are emitted simultaneously

at directions nearly 180 degrees with respect to each other. The gamma rays are detected

by rings of scintillation crystals in the scanner, and are tagged as an annihilation pair by

using extremely fast coincidence electronics. Each detected pair therefore indicates that a

positron annihilation event has occurred somewhere along the line joining the two detec-

tion crystals. The direction of the emitted gamma rays is completely random for each

annihilation, but by recording enough of these events, a complete projection data set may

be obtained that measures the event density at all angular and linear positions. This pro-

jection data set, often called a sinogram, indicates the integral of all tracer activity along

each line of response. It can be reconstructed by a number of tomographic techniques into

a 3D image volume. Details about various reconstruction techniques are beyond the scope

of this dissertation. See [40] for an in-depth description of many reconstruction tech-

niques. The facts that are relevant to this work can be summarized as follows:

Figure 3-1. Typical FDG Cardiac PET Image

Transverse slice through the body shows that the left ventricle appears as a cup shaped
object that is the principal feature in the PET image. Activity in the blood pool, right
ventricle and lungs is relatively low.

Lung

Atria

(apex)

Blood Pool

Right Ventricle Left Ventricle

(base)
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• Reconstructed PET voxel intensity represents the estimated concentration of radioac-

tive tracer present within that voxel.

• The noise characteristics of the reconstruction are largely a function of the total tomo-

graph events collected during an acquisition. More events result in a better statistical

estimate of the true tracer concentration in each voxel.

• Tomograph events can be stored in different sinograms at different times, then recon-

structed into separate volumes to indicate the tracer concentration at different time

points. However, because the total number of events has been distributed into more

than one projection set, the resulting reconstructions appear noisier.

3.2. Gated PET Acquisitions

In gated cardiac acquisitions, the cardiac cycle is monitored with an electrocardio-

gram (ECG) so that the R-wave at the start of each cycle is detected. Using this time point

as a reference, tomograph events are then directed into different storage locations, divid-

ing the cardiac cycle into some 5-15 time segments, called gates, each typically 50-100

msec in length. Because a single 100 msec time segment would not provide nearly enough

events for an adequate image reconstruction, the events from a large number of cardiac

cycles are summed over the course of a 5 - 30 minute scan. In its simplest form, cardiac

gating is carried out by using the same time segments with respect to the R-wave for each

gate during every cardiac cycle. This simple scheme is usually adequate, though in some

cases where the heart beat is extremely irregular, the gating may be improved by using

other approaches [63,52]. The overall goal of the gating is to provide a sequence of pro-

jection data sets where each represent the shape of the heart at a specific phase of the car-

diac cycle. Hence, the reconstructed volumes effectively capture the heart motion as a

series of freeze frames.

PET data used as test data sets in this work were acquired on the CTI/Siemens ECAT

EXACT HR tomograph. The scanner has an in-plane peak resolution of 3.6 mm full width

at half maximum (FWHM) and a peak axial resolution of 4.0 mm [97]. Rather than bin-

ning tomograph events directly into projection arrays, a list mode acquisition scheme was

used which stored events individually to a disk in real time. This allowed a retrospective



19

gating scheme, where the data could be replayed at will using different cardiac gating or

other preprocessing schemes. For details see [49,41,50].

An example of three orthogonal slices through an ungated cardiac study acquired with

this system is seen in Figure 3-2. This image volume may be compared with a gated study

in Figure 3-3 that was created from the same tomograph data using 100 msec gates and

Figure 3-2. Ungated Cardiac Data

Three orthogonal views of an ungated cardiac study. Reconstructed emission volume seen
in (a) and the transmission correction map (b) used to correct the emission data for the
effects of positron attenuation. The reconstruction in (c) shows the same 3 slices as in (a),
but using a voxel size and reconstruction offsets zoomed in on the left ventricle. Displays
of 3D data sets will often be displayed in this format. To aid in the identification of famil-
iar anatomical structures, orientations of the images with respect to body position are
given. The intersection of the other image planes with each image is also shown.
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(b)
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Figure 3-3. Gated Cardiac Data

Three orthogonal views of the first four time frames in a gated cardiac study. Gate duration
is 100 msec. Though there is less blur in the images than in the ungated case, the images
are considerably noisier.
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reconstructed using identical smoothing filters as were used in the ungated case. As

expected, the ungated sequence is considerably noisier. However, one can see even

through the noise in the gated sequence the motion that takes place between diastole and

systole. Typically, this motion is usually in the range of 1-13 mm [77,67,28,29], which is

also in the range of the thickness of the left ventricle wall [53]. So even though conven-

tional PET scanners can resolve objects smaller than the thickness of the heart walls, the

motion in ungated data sets severely limits the effective spatial resolution.

3.3. Imaging Model Implications

As one would expect, the tissue of the heart bends and stretches during the cardiac

cycle in accordance with the laws governing physical elastic media. Given that cardiac

imaging takes place after the radiotracer has left the bloodstream, nearly all the activity

within the field of view of the tomograph is trapped in the tissue, and should therefore be

approximately conserved. Motion seen in the voxels between two image volumes must

therefore be in agreement with the motion of the underlying elastic tissue. Because the

myocardial tissue is approximately incompressible [59,19], it should be expected that the

motion field within the cardiac field should be divergence-free. Note however, that though

the tissue being imaged in a cardiac study is a continuum, the elastic properties of adja-

cent regions in the image would be considerably different, such as the blood pool within

the ventricles of the heart and the lung air space. Indeed, the blood pool is not only a vis-

cous fluid with different material properties from the myocardial tissue, but it also is an

object that moves in and out of the field of view during the cardiac cycle. Therefore,

though elastic constraints should be enforced on the motion field for voxels representing

the same tissue type, they do not necessarily need to hold across tissue boundaries.

These characteristics differ from many other applications of 3D deformations, for

example, in the matching of MRI brain data sets to a common brain atlas. In this latter

case, the two objects being matched are not physically the same piece of tissue. Therefore

one would not necessarily expect image density to be conserved, nor would motion neces-

sarily have to conform to elastic material models.
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Chapter 4

4General Formulation

4.1. Deformation Framework

The deformable modeling algorithm described here employs a densely defined vector

field to non-rigidly displace voxels from a source volume, thus forming a deformed vol-

ume. The goal of the algorithm is to calculate the motion vector field such that the

deformed volume closely matches a third data set called the reference volume. A cost func-

tion that naturally follows from this goal is an image matching constraint measuring in

some way the difference between the reference volume and the warped source volume. The

dimensionality of the motion vector field is extremely high – a three-component vector is

defined to describe the motion at each voxel. Due to this, there are frequently numerous

motion fields that could be used to warp the source volume and equally satisfy the image

matching constraint. Therefore, an additional cost function is usually included which

enforces some measure of motion field smoothness to regularize the solution. To make a

physical analogy, the image matching constraint can be thought of as a stretching and

bending force that tries to pull voxels in the source volume to their corresponding location

in the reference volume, and the smoothness constraint can be viewed as a set of tiny

springs attached between adjacent voxels which resist any deformation due to the image

matching force. Indeed, this physical analogy is just what the current formulation attempts

to model. Factors weighting the cost of motion field smoothness violations are chosen so

that the elastic restraining force is similar to the physical restraining forces seen in the car-
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diac tissue being imaged. The elastic restraining force of the smoothness constraint pre-

vents any deformations that are physically unrealizable, thus considerably reducing the

domain of allowable motion fields. Typically, there is noise present in the source and ref-

erence image volumes. The restraining forces are also used to prevent false correspondence

between two uncorrelated intensity peaks due purely to noise.

The motion estimation framework is described as follows. Define two 3D density

fields, and , where represents the voxel index in a discrete

domain, and are the dimensions of the image

density fields. We will call the source volume, and the reference volume. A

Lagrangian motion field is defined as,

(4-1)

and the deformed volume of is defined as . We will call

the deformed or the target volume. As depicted in Figure 4-1, each motion vector, ,

f 1 r( ) f 2 r( ) r x y z, ,( )=

r 1 N1,[ ] 1 N2,[ ], 1 N3,[ ]{ , }∈ N1 N2 N3, ,

f 1 r( ) f 2 r( )
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f̂ r m r( )+( ) f 1 r( )=
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Figure 4-1. Voxel Correspondence

A Lagrangian motion vector field is defined that expresses the mapping between cor-
responding voxels in the source and reference volumes.

m r( )

r

m r( )



24

defines the displacement necessary to bring a voxel from the source volume into corre-

spondence with the voxel representing the same tissue in the reference volume. In a con-

tinuous sense, the motion field must therefore be one-to-one and onto, thus defining a

homeomorphic transformation. Assuming and are measurements of a conserved

medium, the goal of the motion estimation technique is to find the physically plausible

motion field such that .

With these definitions, we can express generalized cost functions for the image match-

ing and smoothness constraints at each voxel location, , as follows:

(4-2)

and

(4-3)

where partial derivatives of the motion field are written using the notation: ,

, and represent generic functions chosen for the image matching

and regularization constraints. To simplify notation, the argument has been dropped in

the partial derivative terms. So the image matching constraint is a function of voxel differ-

ences between the reference and deformed source volumes, and the smoothness constraint

is a function of the first and second order differential properties of the motion field. The

overall minimization problem is to find a motion field consistent with elastic material prop-

erties that best match the deformed and reference via a minimization of:

(4-4)

4.2. Similarity Measures

Ideally, a good similarity measure for the cardiac PET application should be efficient

to calculate, should be valid for possible long-range displacements, and should be rela-

tively robust in the sense that it should provide a good measure of the closeness between a

reference and a deformed volume over a wide range of noise conditions. Also, because a
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motion vector must be estimated at every voxel, the similarity measure must provide a

measure of image difference at every voxel in the deformed data set. This latter require-

ment precludes many manually driven comparisons of a sparse feature set.

Early optical flow methods were based on the assumption that the intensity of a pixel

(or voxel in 3D) is proportional to a quantity that is conserved as the underlying medium

moves. For example, in the case of 2D imaging, the quantity was the reflectance at a given

point on a surface. For 3D materials, the conserved quantity could be the proton density for

MRI data, or the tracer concentration in PET data. We can view the voxel intensity repre-

senting this conserved quantity in a deforming volume as the time varying function,

. Assuming also that the underlying medium is incompressible leads to the follow-

ing similarity measure in differential form:

(4-5)

This is the 3D equivalent to the brightness constraint of Horn [39]. It has been used as a

similarity measure for 3D data sets by Song [82] and others. One can easily see in this

equation the ill-posed nature of the problem estimating the motion field. There are three

unknown variables and only one equation. Still, by combining this equation with simple

smoothness constraints, the differential form of the similarity measure has the advantage

that it lends itself naturally to well-posed linear regression minimization techniques. For

the present application of cardiac PET, however, the measure is inadequate because inter-

frame displacements can be considerably larger than one voxel, and hence Equation 4-5 is

not applicable.

For long distance displacements, it is natural to look at similarity measures between

voxels in the reference and in the deformed volume. A rather brute force method of imple-

menting this, which has been used by Bajcsy [7] and others, is a normalized cross correla-

tion similarity measure:

(4-6)
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This technique is useful for measuring the difference between two image volumes contain-

ing voxels representing the same type of material. Indeed, it would be a useful measure for

comparing different gates from a cardiac PET sequence; however, it is computationally

expensive. If simpler measures are available that are still reliable, it would be better to use

them.

Numerous other similarity measures have been reported that are applicable to deforma-

tions with long-distance displacements, and have varying degrees of robustness and

requirements for user interaction and computer processing. For example, curvature match-

ing techniques have been used by some investigators. The geometry of the left ventricle

can be described by two well-behaved surfaces, the endocardium is the inner surface, and

the epicardium is the outer surface. By modeling the stretching of the heart as a conformal

stretch, measures such as Gaussian curvature may be used to gauge surface point corre-

spondence [2,45]. Surface-based measures like these can be successful provided that the

surfaces can be estimated accurately. However, this is not a trivial task in PET data because

of the noise typically present. The fact that curvature relies on high order partial derivatives

of the parameterized surface makes the technique vulnerable to error in high noise settings.

Also, like most other feature extraction techniques, the reliability of the similarity measure

is extremely dependent on the reliability of the technique to extract similar features in the

two data sets. That is, though the feature extraction simplifies subsequent comparison cal-

culations, some important information may have been lost during the feature extraction

process. These techniques using a sparse set of extracted features also need to provide a

method for interpolating the difference measure at the locations of each voxel.

One obvious simple measure that does not require any feature extraction and is valid

for large interframe displacements is the squared difference measure between single vox-

els:

(4-7)

where is a global scalar used to alter the balance between the image matching and reg-

ularization terms. We choose this measure because it is computationally efficient, it does

eI r( ) γ I f 2 r( ) f̂ r( )–( )
2

=
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not throw away potentially useful image information, and it does not require any operator

intervention. Also, because it provides a similarity measure at every voxel instead of a

sparse set of feature points, techniques are not necessary to interpolate values between fea-

tures.

4.3. Regularization Constraints

As Horn noted in his 2D work on optical flow, the flow field problem based only on

the brightness constraint is ill-posed. It therefore requires an extra regularization constraint

to obtain a unique solution. The regularization constraint he proposed penalized departures

from flow field smoothness by weighting the square of the first partial derivatives of the

2D flow field as follows:

(4-8)

A 3D generalization expressing all squared components of the flow field gradient in this

simple smoothness constraint is

(4-9)

Song and Leahy [82,83] and later Zhou [103] combined this constraint with a divergence-

free constraint:

(4-10)

which in essence modeled the underlying material as conserved, incompressible medium

if we require to equal zero at every voxel. Rather than making the divergence pen-

alty a hard constraint limiting the flow field to zero divergence, both Song and Zhou chose

to weight the constraint as an error term which is minimized along with the image matching

and smoothness criteria. Combining Equation 4-5 with Equation 4-9 and Equation 4-10 in

this manner results in a well-posed problem that can be solved via standard minimization

techniques.

In terms of a material model for the medium being imaged, the only assumption made

using the smoothness and divergence constraints discussed thus far is that the medium is a

conserved quantity which resists compression and deforms smoothly. Other authors have
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used more sophisticated constraints based on continuum theory and material models. A

considerable body of work modeling deformable curves and surfaces known assnakeswas

based on two types of material constraints [46,16]. For a parameterized two-dimensional

snake surface embedded in a three-dimensional volume,

, an internal energy function was defined by:

(4-11)

The first order derivative terms in this equation are called the membrane terms, for they

make the surface resistant to stretching, much like an elastic string in one dimension, or a

membrane in two dimensions. The second order derivative terms make the model resistant

to bending forces, and can thus be interpreted as a rod in one dimension or a thin plate

model in two dimensions. The individual weighting terms, , are used to control the elas-

tic properties of the model. Obviously, increasing the value of the first order derivative

weighting terms make the model more resistant to stretching, and likewise, increasing the

second order terms make the model more resistant to bending.

These two physically inspired restraining forces have appeared together or indepen-

dently in a number of other applications, both for modeling parametric surfaces and 3D

solid models. If we set the snake weighting factors to one and develop the restraining

forces for an isotropic solid, we arrive at the equation in three dimensions for the mem-

brane term [3]:

(4-12)

Because the partial differential equations expressing the equilibrium condition for a body

undergoing stress using this model result in a Laplacian operator, this model is also known

as the Laplacian model. We also see that the snake membrane term is exactly the same as

Horn’s and Song’s smoothness criteria.

The thin-plate energy function has also been used alone as a restraining force by a

number of authors [10,24,78]. Generalized for a volume in three dimensions, this model,

also known as the biharmonic, or the thin plate spline model can be expressed as:
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(4-13)

The three dimensional generalizations of the membrane model and the thin plate spline

certainly restrain a volumetric model from deforming, but a physical interpretation of them

is not always readily intuitive since they are based on one and two-dimensional physical

models. Many papers modeling solid object deformation have been written using a more

intuitive formulation based on continuum mechanics called the linear elastic model

[12,7,60,34,24,22]:

(4-14)

where and are elastic weighting terms called the Lamé constants. These can be written

in terms of the more intuitive constants,E, called the Young’s elasticity modulus and ,

called the Poisson ratio:

 and (4-15)

E relates the tension of the object to its stretch in the same direction, and is the ratio

between lateral contraction and axial extension [5]. Comparing with the simpler con-

straints of Equation 4-8 and Equation 4-9, it can be seen that the term in the equation

penalizes non-zero divergence and the term penalizes sharp discontinuities in the flow

field. For highly incompressible fields, the Poisson ratio approaches a maximum of 0.5,

which yields a divergence term, , that approaches infinity. The linear elastic model has

often been expressed in the form of the equilibrium partial differential equations for a

homogeneous, isotropic body undergoing stress:

(4-16)
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where is a distributed external force applied to the body, is the divergence of ,

is the Laplacian of , and is the gradient operator. This expression is known as

the Navier equation.

For three-dimensional deformations of biological tissue, such as MRI data sets of

breast tissue, the linear elastic model has been found to be slightly more accurate than the

thin plate spline [24], though perhaps this is at the cost of extra processing time and the

requirement for specifying the Poisson ratio and the elasticity modulus. Choice of the elas-

ticity parameters varies according to the application. For modeling breast tissue, Davis

chose values of the Poisson ratio to be 0.01, 0.25 and 0.49. Of these values, the ratio of 0.25

produced the best matching, indicating that modeling the tissue as somewhat compressible

was optimal [24]. For other applications, such as the matching of brains from different sub-

jects, there is no intuitive reason to expect one value of the Poisson ratio to work better than

another, since volumes being deformed represent two entirely different physical objects.

Perhaps for this reason, Bajcsy set the Poisson ratio to zero to allow greater freedom in the

elastic matching process [7].

One shortcoming in all the models discussed thus far for modeling biological deforma-

tions is that they assume infinitesimal deformations. This may be appropriate for materials

like steel, but they do not necessarily apply for the deformations that take place in the heart,

or for the matching of two different brain data sets. The models using an infinitesimal dis-

placement assumption will still impose a penalty for a volume deforming with large defor-

mations, and enforce the same topological properties between a deformed and a reference

volume, but an intuitive interpretation of the elasticity parameters may be misleading. An

attempt to more accurately model large scale deformations has been carried out by Chris-

tensen [15, 14]. In his work, which was applied to the matching of different MRI brain data

sets, he modeled the volume as a viscous fluid. The partial differential equation modeling

this behavior is as follows:

(4-17)

where the deformationvelocity is given by

F m∇• m

m∇2 m ∇

α v r t,( )∇2 α β+( ) v r t,( )∇•( )∇+ F=
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(4-18)

where and are viscosity constants, and where is a driving force that decreases as

the deformed volume approaches the shape of the reference. Note that Equation 4-17 bears

more than just a resemblance to the Navier equation describing the linear elastic model,

however, by solving this equation successively at a large number of time points, the

deformed volume could be made to track large displacements.

The viscous fluid approach was found to be very successful for matching largely dif-

fering brain data sets without inducing a topology change that would be comparable to a

discontinuous tear in the deformed volume. However, it is probably not the most appropri-

ate model for cardiac tissue. Though the walls of the heart can deform with displacements

that are larger than an infinitesimal formulation would model, they are certainly less com-

pliant than a viscous fluid. Christensen’s approach allowed for sinks and sources in the

model; a characteristic that would violate the conservation of activity assumption for car-

diac PET data. Also, the viscous fluid method is extremely computationally expensive. For

these reasons, we will begin by using the linear elastic model for the work in this thesis.

Anisotropic and large displacement variations based on this model will be discussed in

Chapter 6.

4.4. Criteria Minimization

4.4.1. Euler-Lagrange Approach

Recall that in order to find the motion field that best deforms a volume to match a ref-

erence, we are minimizing the total energy as defined in Equation 4-4, which is the sum

over all voxels of the image matching and regularization criteria. Note, that when using a

Lagrangian motion description, the image matching terms are evaluated at the “forward

warped” location, . Details on the calculation of the deformed volume, ,

given the motion field, , are found in Chapter 5. When using the voxel squared differ-

ence image matching criterion and an isotropic linearly elastic material model, this energy

function is:

v r t,( )
td
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(4-19)

One approach to this optimization is to invoke a conjugate gradient minimization tech-

nique similar to the method proposed by Zhou [103]. The non-linear process of calculating

the best deformed volume matching the reference is linearized using a Taylor series

approximation. Assuming the true motion field is , and the current estimate is , then

a Taylor series approximation of can be expressed in terms of a delta flow

field,  as:

(4-20)

Substituting the expression, , for  in the constraint equations results in

(4-21)

Equation 4-21 represents a quadratic functional in that can be minimized using the cal-

culus of variations [38] (See Appendix A). The resulting Euler-Lagrange equations that

can be derived for each component of the motion field are as follows:
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--- ũy uyδ–( )2
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(4-22)

(4-23)

(4-24)

These equations are linear in and are solved via standard finite differencing tech-

niques and a conjugate gradient algorithm. Solution of the overall problem is thus carried

out in a two-step process involving two loops. In the outer loop, the estimate of the motion

field, is used to calculate the current deformation volume, . Then, in an inner loop,

a conjugate gradient algorithm is used to find the best satisfying Equation 4-21. This

delta motion field is added to the current total flow field and the procedure is repeated. For

the results presented in this dissertation, ten to fifteen iterations of this outer loop were typ-

ically required to reach an overall solution. Each conjugate gradient step usually converged

quickly, and also required some ten to twenty iterations.

4.4.2. Nonlinear Over-Relaxation Method

An alternate minimization technique that is a bit more straightforward than the previ-

ous approach is based on nonlinear successive over-relaxation (NLOR) [81]. Rather than

using a Taylor approximation to obtain a linear formulation, the NLOR technique com-

putes derivatives of the energy function directly to minimize any linear or nonlinear system

of the form

(4-25)

The minimization technique can therefore be used to investigate formulations of this defor-

mation problem that include nonlinear functions.

For each of the parameters in the motion vector field, we can define

the derivative of the energy function with respect to that parameter as:
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=

γ I f 2 f̂– f̂∇ mδ•+( ) f̂ z λ uxzδ vyzδ wzzδ ũxz– ṽyz– w̃zz–+ +( )
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(4-26)

A NLOR iteration is defined as:

(4-27)

The term, , is a scalar typically set between . Normally, each iteration of the

NLOR technique requires evaluation of the entire objective function and its derivative.

However, for the PET deformation problem, a small change in a single motion vector com-

ponent affects only a very small fraction of all the terms in the function. Therefore the

NLOR technique can be carried out relatively efficiently. In our implementation, we ini-

tialize the motion field to zero, then use a checkerboard update to proceed with the itera-

tion. Additionally, we found that convergence was improved if a limit equal to the voxel

size was imposed on the maximum step size.
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Chapter 5

5Deformation Sampling

5.1. Forward Verses Backward Sampling

Though the motion field describing the volume deformation is a one-to-one, onto map-

ping in a continuous domain, implementation on a discrete domain involves some subtle-

ties that are important to recognize in the deformation of PET data sets. In an application

where the deformed volumes are being summed together to form a composite volume, care

must be taken during deformation sampling so that the composite volume represents a sum

of all voxels from the source volumes. Past efforts implementing 3D deformations such as

the work of Christensen, Bajcsy, and Zhou [15,7,103] have used a reverse transformation

to deform voxels in the deformed volume. In this Eulerian formulation, the flow field

motion vectors describe a particle’s motion with respect to its final position. That is, the

motion vectors are defined in the space of the reference volume, and the “heads” of all the

motion vectors terminate at discrete voxel locations in the reference volume. The motion

vector “tails” effectively sample from a continuously defined location in the source vol-

ume. Thus to obtain the value of each voxel in the deformed volume, ,

eight voxels from the deformation volume are sampled at the location, , and

weighted according to trilinear interpolation. In the warping of two-dimensional scene, a

backward sampling scheme may be useful for overcoming problem areas due to occlusion,

where an occluded region in the source image is unoccluded in the reference volume. How-

ever, for three-dimensions continuous volumes, no occlusion problems exist, and each

f̂ r( ) f 1 r m–( )=

r m–
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voxel in a source volume should be represented in the reference.Backwardsampling

unfortunately does not guarantee that each voxel in the deformation volume will contribute

to the deformed volume.

In a previous work [47], we proposed the use of a forward sampling technique which

defines the location of the motion vector at its starting position in the space of the source

volume. In this Lagrangian formulation, the motion of each discrete voxel in the source

volume is well-defined, though the motion vector generally terminates on non-integer spa-

tial locations within the deformed volume. To calculate the deformation, the value of each

voxel in the source volume is simply distributed into the eight voxels at the location,

, via trilinear interpolation. The deformed volume is calculated in a single pass by

first initializing the volume to zero, then forward projecting all voxels in the source vol-

ume, adding to the appropriate eight voxels in the deformed volume for each projection.

Formally, this may be expressed by

(5-1)

where represents the trilinear weighting factor and represents the region into

which a forward displaced voxel would contribute.

r m+

f̂ r( ) wr̃ f 1 r̃( )
r̃ m r̃( )+ R r( )∈

∑=

wr̃ R r( )

Source Voxels

Target Voxels

Backward Sampling Forward Sampling

Figure 5-1. Deformation Sampling Techniques

Forward sampling uses Lagrangian motion vectors to displace each voxel from a
source volume into target voxels of the deformed volume. In contrast, backward sam-
ples use motion vectors defined in an Eulerian sense. Depending on the motion field,
some voxels may contribute little or not at all to the deformed volume. The forward
sampling technique insures that each voxel in the source volume is represented in the
deformed volume.



37

This forward deformation technique guarantees that each voxel in the target volume is

represented in the deformed volume and that the integral of voxel intensities is conserved

between the source and deformation volumes. Additionally, it has the characteristic that a

converging flow field sampling from a uniform region in the source volume results in

increased voxel intensities for corresponding regions in the deformed volume. In a similar

manner, a diverging flow field produces corresponding voxel intensity decreases. Though

it would seem that this would be a useful characteristic when modeling incompressible

underlying media, it was found that in practice artifacts frequently developed in the

deformed volume during the calculation of an optimal flow field. This could be attributed

to two things. First, even small non-zero divergence in the motion field produces nonuni-

formities in the deformed volume due to a nonuniform redistribution of source voxel inten-

sities into the target deformation volume. As such, it was difficult for a deformable motion

minimization algorithm to converge to a motion field producing a deformation matching

the reference volume. Second, the forward deformation calculated in this fashion is a non-

linear function of the motion vectors. Hence, the validity of a Taylor series approximation

of  as described previously ( ) is questionable.

A modified implementation used in this work makes use of a normalized Gaussian

weighted sampling scheme. Like the forward sampling scheme described by Equation 5-

1, this scheme employs a motion field defined in a Lagrangian sense. Recognizing that the

motion vectors will terminate at non-discrete locations in the deformation space, the con-

tribution that each source voxel makes to a voxel in the deformation volume is weighted

by a Gaussian distance measure. The distance measure is subsequently normalized by the

total weights of all source voxels contributing to each target voxel. More exactly, the value

of the deformed volume at some discrete location on the voxel grid, , may be expressed as

(5-2)

where represents the Euclidean distance between the target voxel in the

deformation volume at location and the location of the displaced source voxel at
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, and where represents the maximum distance from a target voxel into

which a displaced source voxel can contribute. The weighting factor, , is

given by the Gaussian function as follows:

(5-3)

This scheme is similar to a technique called kriging [68], which is often used to obtain

samples on a regular grid from a set of non-uniformly spaced samples. Like our previous

formulation, the forward deformation is implemented in a single pass by first initializing

the deformed volume to zero, then forward projecting each voxel in the target volume. At

the location of the forward projection, the distance is calculated to neighboring voxels in

the resampled volume and the projected voxel is distributed according to the calculated

weighting. By storing the total weights accumulated for each resampled voxel, a normal-

ization factor can be calculated at the end of the pass that insures that all weights at each

target voxel add to one.

5.2. Sampling Examples

A hollow ellipsoid phantom, as seen in Figure 5-2 will be used to illustrate some the

characteristics of the different sampling schemes. Here, the ellipsoid is represented in a 64

× 64× 16 voxel density volume as a bright object on a zero background. The figure shows

three orthogonal views to emphasize that it is a 3D phantom, though only the transverse

view will be shown in subsequent figures. To first demonstrate that in some cases, nearly

r̃ m r̃( )+ Dmax

wd r̃ m r̃( )+ r,( )

wd r̃ m r̃( )+ r,( )
1

2σ
-----------e

d r̃ m r̃( )+ r,( )( )2

2σ2
------------------------------------------–

=

Figure 5-2. Ellipsoidal Phantom.

Three orthogonal views (transverse, coronal, sagittal) through a 3D ellipsoidal
phantom. For reference, each image shows the lines of intersection with the two
other views.
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any naive sampling scheme is adequate, Figure 5-3 shows the results after deforming the

volumes via a uniform translation motion field. A transverse slice through the source

volume is seen in (a), and the uniform translation flow field along this slice is seen as a

vector plot in (b). The “truly” translated ellipsoid is seen in (c) along with an edge map of

the original source volume. The results of the deformation using a backward sampling

scheme, an unnormalized forward sampling scheme, and a Gaussian normalized scheme

all produce the same result, as seen representatively in (d). A weakness of the backward

sampling technique is demonstrated by using the extremely non-uniform flow field seen in

(e). This vector field represents an extremely divergent case where nearly all motion vec-

tors point back to just a few source voxels. The resulting deformation, seen in (d), is exactly

the same as for the translational case. Conversely, when this motion field is applied to

Figure 5-3. Simple Translation.

Uniform translation using different sampling schemes produces indistinguishable
results. Slice through the source volume is seen in (a), the vector flow field in (b),
and the “true” translated deformed image in (c). All three sampling schemes pro-
duce indistinguishable results, shown in (d). However, due to the fact that the back-
ward scheme does not necessarily sample from all source voxels, a great number of
“incorrect” flow fields, as shown in (e) may also produce a similar deformation (f).
Using the same “incorrect” flow field in a forward scheme produces a predictable
“incorrect” deformed volume, as in (g).

(a) (b) (c) (d)

(e) (f) (g)
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either of the forward sampling schemes, the result is obviously different from a uniform

translation, as seen in (g) This example points out how backward sampling can under-rep-

resent a considerable number of voxels from the source volume, and how the domain of

permissible motion fields which produce a deformation matching some reference volume

can be quite large. When using a forward sampling scheme, the range of motion fields that

could produce acceptable deformed images matching a reference would be more limited.

The next example illustrates where a normalization term is useful in a forward sam-

pling scheme. Figure 5-4 shows the results of the ellipsoid undergoing a uniform 30 degree

rotation. Motion field vectors are seen in (a), and the resulting deformation using backward

and normalized forward sampling are seen in (b) and (c) respectively. These two images

show nearly identical results, that is, a rotated version of the source ellipse that is only dif-

ferent because of the intrinsic smoothing of the interpolation process. In contrast, the result

using unnormalized forward sampling, seen in (d) looks markedly different. Here, the dis-

crete implementation of deformation sampling with a continuous rotational motion field

results in a mottled deformed image due to a slightly uneven redistribution of source vox-

els. In initial efforts to implement deformable motion algorithms using this technique, it

was found that convergence of the algorithm was extremely slow. Presumably, this could

be due to the algorithm attempting to minimize image differences due solely to this non-

Figure 5-4. Uniform Rotation.

Motion field describing a rigid rotation about the z-axis is seen in (a). Resulting
deformation volumes obtained using backward sampling (b) and normalized for-
ward sampling (b) appear accurate, but the volume obtained using unnormalized
forward sampling has a noisy appearance due to the nonuniform redistribution of
source voxels. Grey scales in (b),(c), and (d) have all been normalized by the over-
all minimum and maximum voxels in found in each volume.

(a) (b) (c) (d)
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uniform redistribution, rather than due to actual motion between a source and reference

volume.

A final example using an incompressible stretching deformation is seen in Figure 5-5.

The images in (a) and (b) show the source volume before and after stretching the volume

by factors of 1.25 and 0.8 respectively along the x and y axes respectively. Two different

interpretations of the motion field implementing this deformation are shown in (c) and (d).

The first of these is a uniform extension and compression in X and Y along the entire vol-

ume. The second is a discontinuous motion field that is non-zero only at locations corre-

sponding to the voxels representing the source ellipsoid. Note that in this case, the

discontinuous motion field could not be used to describe the motion of a continuous vol-

ume, such as a cube of solid rubber, for it violates the principle of the impenetrability of

matter. However, it may make sense to consider a motion description like this in some

cases, for example for a shearing motion between two adjacent but not connected surfaces,

or for the motion of an object next to a featureless background, as in the case of the brightly

defined left ventricle in cardiac PET data. The images seen in (e), (f) and (g) show the

results of using the backward, normalized forward and unnormalized forward sampling

schemes on the continuous motion field in (c). These three images show similar results to

the uniform rotation case. That is, both backward and normalized forward sampling pro-

duce a deformed volume representative of the true deformation. Again, the volume pro-

duced by unnormalized forward sampling matches the shape of the desired deformed

ellipsoid, but the voxel values are nonuniform due to the nonuniform redistribution of the

source voxels.

The last row of images shows the results of the three sampling schemes on the discon-

tinuous motion field. The inadequacies of the backward sampling case are obvious, since

the shape of the deformed ellipsoid is severely distorted in (h). The normalized forward

sampling technique produced a better estimate, preserving the shape of the stretched ellip-

soid even though the voxel intensities at the edges are somewhat in error due to the smooth-

ing inherent to the Gaussian weight of displaced voxels. Only the unnormalized forward

sampling technique conserves the integral of voxel intensities between the source and the

deformed images, and appears to preserve the shape transformation as well. However,
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again in this case the resulting deformation in (j) is nonuniform in areas where the object

should be uniform. For these last three data sets, the ratio of the actual integral of voxel

intensities to true integral of voxel intensities was 1.15, 0.96 and 1.0 for (h), (i) and (j); and

the squared error difference between the reference in (b) and the three are 8.68148e+07,

4.97173e+07, and 1.75321e+07. This compares to voxel intensity ratios of 0.999, 1.0,

Figure 5-5. Incompressible Stretch Deformation.

Source volume (a) and stretched reference (b). A continuous motion field imple-
ment the stretch is seen in (c); the same field with positive motion vectors only at
locations corresponding to the ellipsoid (d). Deformations calculated using back-
ward (e), normalized forward (f) and unnormalized forward (g) sampling and the
continuous motion field of (c). The correspond deformations using the discontinu-
ous motion field of (d) for the three sampling techniques are shown in (h), (i) and
(j).

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)
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0.999 and squared error differences of 1.34487e+07, 1.45759e+07, 1.7442e+06 for the

volumes (e), (f) and (g) produced by the continuous motion field. So it would appear that

for continuously defined incompressible motion fields, either a backward or a forward

sampling technique are adequate, though a forward sampling technique may be more

useful in disallowing physically implausible fields. For discontinuous motion fields, a for-

ward sampling technique appears to be the most faithful method.
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Chapter 6

6Anisotropic Elastic Model

6.1. Stress and Strain Relations

In order to develop a model for

material strain energy, it is necessary

to review the basic relations between

stress and strain in a setting for both

infinitesimal displacements and finite

displacements. Unless otherwise

cited, all formulations here have been

derived from the classical books on

elasticity by Love and Washizu [54,

96]. In the simplest of terms, stress is

defined as a distributed force that is

applied to a solid body, and strain

describes the resulting relative dis-

placement of the body in response to

the stress. There are nine components to the stress tensor defining the state of internal force

at a point in a body. These include three longitudinal stresses: , , , and six tan-

gential stresses: , , . Shown in Figure 6-1, for stresses

acting on an infinitesimal rectangular parallelepiped, the longitudinal stresses are forces

σyy

σxx

σzz

x

y

z

σxy

σyz

σxy

σxz

σxz

σyz

Figure 6-1. Stress Tensor

Six independent components of the
strain tensor acting on a infinitesimal
rectangular parallelepiped

σxx σyy σzz

σxy σyx= σzy σyz= σxz σzx=
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that induce a stretch along each of the principle axes, and the tangential stresses induce a

shearing. As these forces deform an elastic body, we can define six independent compo-

nents of strain to describe the relative displacement: . Like the

components of the stress tensor, the extensional strain components, describe

the change in length, or the stretching, for any linear element oriented along the principle

axes; and the shear strain components, , describe the change in angles between

any two linear elements. In small displacement theory, the relation between the stress and

strain is given by this simple linear form, known as the generalized Hooke’s Law:

(6-1)

For an isotropic material, only two independent elastic constants exist, and the stress-

strain relation reduces to:

(6-2)

where is Poisson’s ratio and is the Lamé constant defined previously in Chapter 4,

also known as the modulus of rigidity. (Recall that .)

A more intuitive feel for the meaning of the strain components as well as the distinction

between the finite displacement and small displacement (i.e. infinitesimal) strain compo-

nents may be obtained by observing the parallelepiped volume element in Figure 6-2
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before and after deformation. Coordinates for points in the undeformed volume, for exam-

ple, , are said to be in amaterialcoordinate system aligned to the prin-

ciple axes of a rectangular Cartesian coordinate system. Each point in the undeformed

volume is displaced by a vector, to a new position in the deformed volume,

with coordinates specified in the material coordinate system. (We may

also define another coordinate system, called thereferencecoordinate system that deforms

with the body.) Thus, we have the relation, . The deformation gradient tensor

is defined in terms of the material coordinate system as follows:

(6-3)
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r
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X3
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Figure 6-2. Volume Element Undergoing Deformation

Material points in an undeformed volume element are deformed into a new configura-
tion.
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Next, the displacement gradient tensor may be defined in terms of the displacement vector,

, as the gradient of the motion field,

(6-4)

Note that the displacement field, , is synonymous with our Lagrangian motion field from

Chapter 4. This gradient tensor may be used to define the right Cauchy-Green tensor, also

called the Green deformation tensor,

(6-5)

Finally, the Green-Lagrange (or Lagrangian)strain tensor is defined by

(6-6)

We may now use Figure 6-2 and a few examples to lend some intuition to the physical

interpretation of these tensors. It is immediately apparent from Equation 6-3 that

describes the deformation of a small line, . Consider now a simple dilation

which stretches the parallelepiped by the factors, , along the principle axes. The

deformation gradient tensor and Cauchy-Green tensors corresponding to this deformation

are

(6-7)

So for the simple case of pure dilation, the diagonal components of the Cauchy-Green

tensor relate the square of the elongation along each axis. That is, for example, for an unde-

formed line segment, aligned to the axis as shown in the figure, the rate of elonga-

tion between and the corresponding line segment, , is given by

. In fact, this trait is true in general for the three diagonal com-
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ponents of even when deformed line segments are no longer aligned to the principle

axes. This is demonstrated in the following case of simple shear. A shearing along the

axis by an angle, is described by the following deformation gradient and

Cauchy-Green tensors

(6-8)

Figure 6-3 shows the deformation for this

example. It is seen that though is no longer

aligned to the axis, the elongation relation

holds. The example also points out the geometrical

meanings of the off-diagonal elements of the

Cauchy-Green tensor. These components describe the change in angle between two line

segments in the undeformed and deformed volumes. For example, the change in angles

between (aligned to the axis) and aligned to the axis compared with

and  is given by

(6-9)

where in general is the angle between the two deformed line segments origi-

nally oriented along the and axes respectively. Similar relations follow in general

for  and .

Now let us consider the Green-Lagrange strain tensor. If we expand the components of

this tensor using Equation 6-6 and the components of the displacement gradient tensor, we

have
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(6-10)

where

(6-11)

This is what is known as the finite displacement strain tensor, for it is a valid description

of material strain for both small and large displacements. We distinguish this from the

infinitesimal (small displacement) strain tensor:

(6-12)

where the second degree terms are assumed to be negligible and are omitted:

(6-13)
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The geometrical interpretation of the large displacement strain tensors parallels those of

the Cauchy-Green tensor. The diagonal elements of the tensor describe object stretching

along the principle axes, and the off-diagonal elements describe changes in angles between

two line segments. More exactly, these relations hold [44]:

(6-14)

for a line segment aligned to the axis in the undeformed volume, and for a change

in angle, between two line segments initially aligned along the and axes. The

approximation on the right is valid for small displacements. The relations for the other

strain components follow analogously.

6.2. Strain Energy Functions

As an elastic body is deformed, the work that is done by the external forces results in

stored potential energy for that body. Assuming that the deformation does not change the

temperature of the object, this stored energy is called thestrain energyassociated with the

deformed body. Washizu shows that using small displacement theory, the strain energy

stored in a unit volume is given by

(6-15)

Assuming that the stress-strain relations are linear, as in Equation 6-1, and is a per-

fect differential that satisfies the relation,

(6-16)

then the strain energy equation can be simplified to

(6-17)
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where is the vector of infinitesimal strain components,

and is the matrix relating stress and strain in Equation 6-1. A similar expression may be

found using finite displacement theory, except that the infinitesimal strain components are

replaced with the finite theory versions, . For isotropic materi-

als, the strain energy function simplifies to

(6-18)

and for the finite displacement model, the strain energy function is

(6-19)

Note that the strain energy for the infinitesimal model is equivalent to the linear elastic con-

straint already described by Equation 4-14.

Numerous other strain energy relations have been proposed to describe linearly

deforming and non-linearly deforming materials. Many linear models make use of the

three principle invariants of the Cauchy-Green tensor, , which remain unchanged under

coordinate rotations. These are given by [5,43]:

(6-20)

where denotes the trace of the matrix, denotes the determinant of , and

where are the components of stretch along the three principle axes. Because a

description of an isotropic material must be invariant to a change of coordinates, all isotro-

pic linear strain energy models may be expressed in terms of these invariants. If the mate-

rial is also incompressible, then , so , and the strain energy functions

for these materials can be expressed in terms of just the first two invariants. One strain

energy function, called the “neo-Hookean” model is given by:
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(6-21)

This energy model has been found to characterize materials like vulcanized rubber quite

well. Another related model which is also used to model incompressible, rubber-like mate-

rials is the so-called Mooney-Rivlin form:

(6-22)

When the constant weighting parameters, and were chosen properly, this second

model was seen to more accurately predict experimental data from certain kinds of rubber

than did the neo-Hookean form [5]. At first glance, these functions look considerably dif-

ferent from the linearly elastic model of Equation 6-18. However, Rivlin has shown that at

least the neo-Hookean form is equivalent to the linearly elastic model for incompressible

materials under small strains [76]. Because of the limitation to completely incompressible

materials and the small strain requirement, these simpler models are probably not appro-

priate for modeling cardiac tissue, and they are certainly not as general as the form in either

Equation 6-18 or Equation 6-19.

Accurately modeling the strain energy function for biological tissue is a difficult task.

It is known that tissue such as the myocardium is anisotropic. Elastic properties vary in the

different directions due to muscle fiber orientations and other factors. Also soft biological

tissue often responds fairly nonlinearly and with large deformations. In addition, though

the tissue is nearly incompressible, there is at least some change in volume due to different

volumes of blood being present in the capillary bed and other small vessels embedded in

the tissue. Some authors have chosen to accurately model this phenomenon, incorporating

information about typical muscle fiber orientations, anisotropic tissue elasticity properties,

and other regional effects that require alignment of a heart data set with a well-described

cardiac template [66,43]. Once this is done, a strain energy such as the following is possi-

ble:
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(6-23)

where are the components of the Green strain tensor in the coordinate system measured

with respect to the tissue, and the other factors are constants used to express the anisotropic

nonlinear behavior along each axis. Strain energy models like these can be quite effective

in characterizing cardiac tissues, especially when combined with finite element models of

the heart structure. However, this type of model is extremely expensive computationally,

and requires an accurate segmentation of the cardiac tissue in a 3D density volume, as well

as recognition of landmarks to establish proper registration with cardiac models [20]. It is

hoped that for the deformable motion problem here, adequate results can be obtained with

simpler models.

6.3. Cardiac PET Piece-wise Isotropic Strain Energy Model

Up until this point, we have outlined various models with a wide range of complexity

and accuracy for characterizing biological tissue in order to regularize the deformation

problem in cardiac PET. However, we have not yet addressed the fact that dramatically dif-

ferent tissue types are present within the field of view. Indeed, the elastic properties of car-

diac tissue are anisotropic, as modeled in Equation 6-23, but the anisotropic properties of

cardiac tissue compared with the blood pool inside the ventricles, or with the adjacent lung

tissue and air space are bound to be a larger effect. It is for this reason that we desire to

model this latter type of anisotropic elasticity, while still utilizing an algorithm that does

not require complex pattern recognition of specific cardiac features.

We propose a piece-wise isotropic strain energy model which models the cardiac tissue

separately from the blood pool and other tissue types in the reconstructed PET volume. By

using an isotropic model for each tissue type, the amount of pre-processing, such as seg-

mentation and landmark recognition, is kept to a minimum. Furthermore, a linear isotropic

strain energy model is fairly easy to implement in a minimization scheme, and its corre-

sponding computational cost does not become burdensome. For the bulk of the remaining
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work, we will use a modification of the linear strain model described by Equation 6-18 as

follows:

(6-24)

Thus, the linear elastic model has been generalized to allow varying elastic weighting

parameters over the volume, and instead of just two global scalars. For loca-

tions corresponding to the nearly incompressible tissue of the heart, the Lamé constants

may be set such that the Poisson ratio approaches 0.5. Conversely, for locations such as the

blood which should not be modeled as incompressible (or possibly, even conserved), the

term may be made small, and only the term would be used to promote a smooth

motion field in those areas.

In this dissertation, we will only consider a bi-valued vector field giving the variable

Lamé constants: one set of values for voxels labeled as cardiac tissue, and another set of

values for voxels labeled as background. The preprocessing requirement thus requires a

segmentation of the left ventricle from the background. We note that an accurate automatic

segmentation of the myocardial boundaries in a gated cardiac PET volume may be a for-

midable task itself, especially due to the noisy nature of the data and the partial volume

effects due to spatial resolution limits. For the results in this dissertation, manual segmen-

tations will be used. Because this segmentation is only being used to model differing elastic

characteristics of different tissue types, and not to define different sampling characteristics,

it should not be sensitive to slight errors of a few voxels along the cardiac boundaries. This

is in contrast to a technique that would pre-segment voxels corresponding to cardiac tissue,

and only operate on (i.e. displace via the deformation algorithm) those voxels.

We acknowledge that the infinitesimal description assumes that the displacement com-

ponents are small, and thus this description is an approximation for typical motion of the

heart. Waldman [95] has shown that because of the large-distance deformations of the

heart during the cardiac cycle, the infinitesimal approximation can induce errors of at least

16% in the strain components. However, because a large-distance strain energy formula-
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tion involves second degree terms of the motion field partial derivatives, an algorithm

implementing a minimization procedure is more computationally intensive and perhaps is

more sensitive to noise in the partial derivative estimates. For this reason, we choose to use

the infinitesimal approximation for most of the results in this dissertation, and note that its

smoothing characteristics should be similar even though the actual strain energies calcu-

lated may be quite different. A comparison of the finite displacement and infinitesimal

models is found in the results of this work.
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Chapter 7

7Final Formulation

7.1. Algorithm Summary

To summarize the different facets of the deformable motion technique described thus

far, the goal of the deformable motion algorithm is to calculate a dense motion vector field

so that a correspondence may be made between matching voxels in a source and a refer-

ence volume data set. It is assumed that the source and reference data set voxels represent

the same physical object that has been non-rigidly deformed between volume imaging

times. The motion field is used along with the source volume to compute a deformed

volume with features that closely match features in the reference volume. Deformation of

the source volume is implemented using a normalized forward sampling technique defined

by Equation 5-2, and repeated here for convenience:

(7-1)

While computing the best motion field to deform the source volume, two criteria are

weighed against one another; first an image matching criterion which tries to minimize a

difference between the deformed and the reference volumes; and second, a motion field

smoothness criterion, which prevents the motion field from taking configurations that

would be impossible or unlikely for an actual physical deforming object. The squared dif-

ference between single voxels is used as a measure of goodness for the image matching
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criterion, and a piece-wise isotropic linear elastic strain energy function is used a measure

of goodness for the regularity criterion. Therefore, the motion field is obtained by minimiz-

ing the following cost function:

(7-2)

where  is the image matching measure given by Equation 4-7, shown again here:

(7-3)

and is the piece-wise linear elastic strain energy given by either the small (infinites-

imal) displacement strain assumption defined in Equation 6-24, and repeated here as:

(7-4)

or by the finite displacement strain assumption, where the infinitesimal strain components,

, in Equation 7-4 are replaced by the finite strain components, , both which were

defined in Chapter 6. Characteristics of different tissue types may be expressed in this

strain energy equation by setting the elastic constants at each voxel location, and

, to a value which is appropriate for that particular tissue.

When we choose the infinitesimal displacement strain formulation, the total cost func-

tion can be expressed in terms of the reference and deformed volumes along with the com-

ponents of the motion field,  as follows:

(7-5)
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where the image matching term is calculated at the forward displaced location,

. This equation is minimized by using a linear Taylor series approximation

to the calculation of the deformed volume. As was described in Chapter 4, it is assumed

that the current estimate of the motion field is , and is equal to the true motion field, ,

plus some small delta flow field, i.e. . The calculus of variations is used to

derive Euler-Lagrange equations and these are solved using a conjugate gradient descent

method to find the best .

It is interesting to note that for the infinitesimal strain case with non-varying Lamé con-

stant values, the partial differential equations resulting from the calculus of variations

(comparable to Equation 4-22, Equation 4-23, and Equation 4-24) can be rearranged in a

format similar to Zhou’s formulation [103], which expressed the regularization criteria in

terms of a smoothness and a divergence-free constraint:

(7-6)

(7-7)

(7-8)

where we have again dropped the from the equations to simplify notation. That is, the

Lamé stiffness coefficient, , is equivalent to Zhou’s divergence-free weighting constant,

and is equivalent to Zhou’s smoothness weighting constant. This points to the fact

that to model physical materials, one cannot simply choose arbitrary values for the smooth-

ness and divergence-free weights, since for physical materials, the Lamé constants are pos-

itive, and therefore .

When the finite displacement strain energy model is used as a regularization constraint,

the cost function equation in terms of the motion field components comparable to

Chapter 7-5 becomes quite unwieldy. Furthermore, it is no longer quadratic in if the
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µ vxxδ vyyδ vzzδ ṽxx– ṽyy– ṽzz–+ +( )
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linear Taylor approximation is used to calculate the deformed volume. Therefore, for the

minimization of this case, the nonlinear successive over-relaxation (NLOR) technique

described in Chapter 4 is used.

7.2. Multi-Resolution Approach

Even though the image matching criterion used here is valid for large-scale displace-

ments, convergence of either minimization technique to a desired minimal cost is difficult

if the motion vectors are large with respect to the voxel size. Both minimization techniques

make use of the gradient of the difference between the reference and the deformed vol-

umes. The gradient is implemented using a standard central differences scheme, which is

a local operator that is unaffected by voxel values more than one or two voxels away.

Therefore, it would be difficult for the algorithm to begin “nudging” a motion vector from

a value of zero if the displacement is much considerably larger than the voxel size.

A standard technique for dealing with problems of this nature is to use a scale space

approach or a pyramid sampling scheme [98,51]. An approach like this employs a hierar-

chy of volumes obtained by subsampling the original volume at progressively coarser and

coarser scales. Because the voxel size is larger at the coarser scales, larger displacements

can be tracked using a minimizer that depends on image gradients. Typically, the coarser

volumes are smoothed before subsampling to prevent aliasing while sparsely sampling the

higher resolution volume. This avoids the generation of spurious detail upon increasing the

scale. A common choice of the smoothing operator is a spherically symmetric Gaussian

kernel. As the scale increases (and the sampling resolution decreases), the variance of the

Gaussian kernel increases as well.

For the work presented here, we obtain a multi-resolution representation of the image

volumes using a uniform cubic B-spline approximation to a Gaussian pyramid [75]. This

is an efficient means of calculating a traditional scale space pyramid. As an example, typ-

ical cardiac PET volumes are 128×128× 47 voxel data sets with anisotropic voxel size of

2.0× 2.0× 3.1 mm. This volume is subsampled into 64× 64× 23, 32× 32× 23 and 16×

16× 23 data sets. The deformable motion algorithm is begun at the lowest resolution with

the motion field initialized to zero. It is then run until convergence, and the resulting



60

motion field is used as an initial condition for the next higher scale. The initial motion field

at a higher resolution is produced using trilinearly sampled interpolation of the lower res-

olution field.

The multi-resolution technique speeds the overall convergence, and in some cases

where the displacements were quite large, the multi-resolution technique was found nec-

essary to avoid solutions at incorrect local minima.

7.3. Calculating the Composite Volume

Once the deformed volume, matching is obtained, subsequent processing

to obtain a composite PET data set is straightforward. The composite sum is computed as

(7-9)

Because the deformed volume was producing using a forward mapping, each voxel

from the source volume has been summed into the data set and the composite volume rep-

resents the total PET counts acquired in the two data sets. In general, data from all cardiac

gates would be combined to form a single composite image, though the results presented

here will only consider the summing of two frames.

f̂ r( ) f 2 r( )

f sum r( ) f̂ r( ) f 2 r( )+=
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Chapter 8

8Results

8.1. Simulation Models

A problem with using real world medical imaging data to test an algorithm is that it is

difficult to obtain a gold standard data set which establishes the “truth” volume. Past

researchers have gone to the extreme of surgically implanting radioopaque markers in the

epicardial surface of canine and human subjects in an attempt to accurately gauge cardiac

motion in real cardiac data [94,59]. This usually is not possible, and for evaluating motion

in PET data sets, a sparse array of markers would still be inadequate for quantifying the

accuracy of a dense motion field calculation. For this reason, many of the results presented

here will use simplified phantom data sets which model certain known characteristics of

cardiac PET data. The first of these phantoms is a hollow ellipse that is deformed according

to a uniform dilation using either a compressible or an incompressible material assumption.

This will be used to demonstrate some of the basic characteristics of the deformable motion

algorithm. We will also use two anthropomorphic cardiac phantoms that are designed to

provide more complicated deformations more representative of the true motion seen in

actual cardiac PET data. These models are now described.

8.1.1. MCAT Phantom

A cardiac PET model based upon an simple geometric structures is one phantom used

to test the algorithm. The phantom was obtained using the Mathematical CArdiac Torso

(MCAT) software implemented at the University of North Carolina [72,87]. It models the
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beating heart inside a fairly realistic torso using a number of ellipsoids and cylindrical

building blocks. Effects such as changing myocardial thickness, heart rotation, varying

ventricular volume and apical movement during the cardiac cycle are possible with the

model. Modeled PET activity for different organs may also be set to a range of different

physiologically expected values, including different values for cardiac defects, which typ-

ically show up in PET data sets as regions of decreased radiotracer uptake.

Figure 8-1 shows an example of three orthogonal slices through the phantom at end

diastole and end systole in a noise-free environment. Voxel intensity for cardiac tissue and

other organs in the field of view are set to typical relative PET activities seen in human

studies. A myocardial defect is seen in the ventricle wall that represents a 20% decrease in

radiotracer uptake. The cardiac activity in the other “healthy” portions of the left ventricle

is uniform, and activity in the thinner walls of the right ventricle and atria is set to the same

as in the left ventricle. (Note that these thinner walls of the right ventricle and atria are often

not even seen in real PET data, due to noise and other effects, as in the example data set

Figure 8-1. MCAT Cardiac Phantom

Three orthogonal slices through the MCAT cardiac phantom at end diastole and end
systole. Organs and other structure within the human torso are modeled using ellipsoi-
dal and cylindrical descriptions. A myocardial defect representing a 20% uptake
decrease is seen in the coronal and sagittal views. An isosurface showing the bound-
aries of the end diastole ventricles is seen on both sets of images.

Transverse Coronal Sagittal

End Diastole
Reference
Volume

End Systole
Source
Volume
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shown in Figure 3-2). The ratio of voxel intensities between the heart and the blood pool

in this data set is 255:6, and between the heart and lung is 255:13.

8.1.2. Prolate Spheroid Finite Element Model

A finite element model of the isolated left ventricle was used to generate a more real-

istic data set with known motion components. The model is based on a prolate spheroid

description of a left ventricle which has been fitted to MRI data acquired from a canine

heart [20]. Included in the model is the incompressible nature of cardiac tissue and non-

symmetric cardiac muscle fiber orientation. A 16 element model was used to determine the

shape of the left ventricle as it was passively inflated. For this paper, the inflated state is

used as a reference volume (much like end diastole), and the deflated state is the source

volume. Because a parametric description of the two models is available, the “ground

truth” motion vectors may be calculated which bring any two points into correspondence.

Three orthogonal views of the model are shown in Figure 8-2.

Reference
Volume

Source
Volume

Figure 8-2. Parametric Finite Element Model

Three orthogonal views through a parametric prolate spheroid model of the isolated
left ventricle. Sixteen finite elements were used to produce the phantom. The elastic
properties of the model were based on MRI data acquired from a canine heart.
Included in the model are such factors as tissue incompressiblity and cardiac muscle
fiber direction.

Long Axis 1 Long Axis 2 Short Axis
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8.2. Material Model Parameter Selection for Isotropic Materials

Though the motion estimation algorithm described in this thesis is designed to model

deformations in anisotropic materials, it is instructive to first study the performance of the

algorithm for estimating smooth motions generated from an isotropic object. To this end,

an isotropic test phantom was designed, which can be seen in Figure 8-3. The phantom is

constructed as a hollow ellipsoid with a sinusoidal density pattern on a zero background.

Three orthogonal slices through the phantom in its reference configuration are seen in the

top row of the figure. An elastic dilation deformation of the model can be easily obtained

by changing the scale of the phantom along the X and Y axis. Recall from Chapter 6 that

for an incompressible deformation, the product of the extension ratios along the principle

Figure 8-3. Hollow Ellipsoid Model

Three orthogonal views through a hollow ellipsoidal model. The reference volume is
seen in the top row. Two versions of a source volume that will be deformed are in the
next two rows. The middle row represents a uniform incompressible contraction by a
factor of 1/0.8 and 0.8 along the X and Y axis respectively. The bottom row represents
a compressible contraction along the Y axis only by a factor of 0.8. Isocontours of the
reference volume boundaries are seen on all images.

Reference
Volume

Source
Volume

Source
Volume

(Compressible)

(Incompressible)

Transverse Coronal Sagittal
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axes must equal 1. That is, . Scaling along the Z-axis was kept constant for

these tests. Therefore an incompressible deformation along X and Y could be defined by

setting ; and a compressible deformation along Y could be defined by setting

α1α2α3 1=

Figure 8-4. Ellipsoid Incompressible Deformation

Deformed volumes and the difference images with respect to the reference volume for
modeled Poisson ratios 0.49, 0.40 and 0.0. The best results appear to be obtained using
a slightly compressible model even though the phantom was produced using an incom-
pressible assumption.

Transverse Coronal Sagittal
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and modifying only . Two different versions of a source volume were pro-

duced. The first, seen in the middle row, represents an incompressible expansion along the

Y-axis by a factor of 0.8, and a corresponding contraction along the X-axis by a factor of

1.0/0.8. The second source volume represents a expansion along the Y-axis by the same

factor, but with no expansion along the X-axis. The volume size for this phantom is 64×

64× 16 with voxel size 1× 1 × 2 mm.

Results from testing the incompressible deformation are first presented. An isotropic

infinitesimal strain energy model with varying values of the Poisson ratio was used by the

motion estimation algorithm to compute the motion field. To evaluate the result, the

α1 1= α2

Figure 8-5. Ellipsoid Compressible Deformation

Though the differences are subtle here, using the zero Poisson ratio for a truly com-
pressible deformation produces a better match. Principle differences between the two
are around the edges. For high Poisson values, the divergence-free constraint prevented
the ellipsoid from fully expanding.

Poisson Ratio=0.0

Difference Image

Deformed Volume
Sq. Img Diff = 138

Poisson Ratio=0.45
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squared difference between the deformed and reference volume was calculated. Addition-

ally, since the true flow field is known in this case, the mean magnitude of the flow vector

difference was calculated between the true and estimated flow fields. The resulting

deformed volumes for Poisson ratios of 0.49, 0.4 and 0 are shown in Figure 8-4. Compar-

ing the deformed and difference images, it is easy to tell that the result using a very high

compressibility factor prevented the algorithm from correctly estimating the result. For

lower values of modeled compressibility, the results are more subtle, but the quantitative

figures of merit show that the Poisson ratio of 0.4 produced better results. One might

expect the model using a Poisson ratio closest to 0.5 to perform best (since we are modeling

an incompressible material), however, this is not the result shown in the figure. Instead, the

best match appears to be obtained using a slightly compressible model.

This finding is in agreement with results obtained by Gorce, et. al. [36], who investi-

gated the effects of different weightings for the smoothness and divergence-free parame-

ters that were originally proposed by Song and Leahy [82]. They found that ability of the

algorithm to accurately estimate motion for an incompressible dilation would decrease

when the smoothness penalty was weighted too greatly. This corresponds to using a small

or negative Poisson ratio. (Note that a strain energy model with a negative Poisson ratio is

possible, though all known materials have Poisson ratios between 0.0 and 0.5.) Gorce

obtained their best results when using a largely predominant divergence-free constraint,

corresponding to a Poisson ratio close to 0.5.

The effects of model mismatch are further investigated using by estimating the motion

field when the actual deformation is a compressible one, as is the depicted in the last row

of Figure 8-3. Here, we would expect that the best results would be obtained by choosing

a low Poisson ratio which does not penalize regions of non-zero divergence. The expecta-

tion is shown to be true in Figure 8-5. It is seen that the motion estimation algorithm works

best for Poisson values close to zero. Comparing the images, one can see that in the case

of the high Poisson ratio, the divergence-free criteria prevented the source volume from

stretching completely along the Y axis to best match the reference.
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It is initially a bit perplexing why the algorithm did not make the best motion estimate

when using a Poisson ratio closer to 0.5 for the incompressible case. We may shed some

light on this result by taking the known motion field and calculating the strain energy as

we vary the Poisson ratio. In this case, most of the terms of the motion field gradient are

zero so that the infinitesimal strain energy is given by

This relation is shown in Figure 8-6b for both the incompressible and compressible cases.

This figure points out that even though the motion field was calculated analytically to rep-

resent a uniform, incompressible dilation, computation of the strain energy gives a mini-

mum not near 0.5, as expected, but closer to 0.4. In contrast, the dotted line on the same

plot shows that for a truly compressible motion field, the minimum strain energy is found

for a Poisson ratio of 0.0. Using this line of reasoning, we would likewise expect the

deformable motion model to perform best when the modeled Poisson ratio matched the

point at which the strain energy for the true flow field minimum exists. That is, for the

incompressible deformation in this case we would expect the motion estimation algorithm

to perform best with a chosen Poisson ratio near a value of 0.4, and for the compressible

deformation, we would expect the best result using a Poisson value of zero.

To see if this is the case, the motion estimation algorithm was run using a wide range

of Poisson ratios between 0.0 and 0.5. The results are seen in Figure 8-6c, where the

squared difference between the deformed and reference volumes is plotted verses the Pois-

son ratio used by the estimation algorithm. Again the solid line represents the behavior of

the algorithm for the incompressible case. Though the minimum is not exactly at the same

place as the analytical strain energy minimum, it is fairly close at a value of about 0.3. Con-

versely, when the true deformation is compressible, the deformation algorithm performs

better as the Poisson ratio approaches zero, as is shown in the dotted line of Figure 8-6c.

Note that the analytical curve is fairly flat in (b), so the mismatch does not seem to greatly

affect the results until the Poisson ratio grows beyond a value of about 0.3.

So it appears that at least in this simple case, modeling the material as either too incom-

pressible or too compressible produces inferior results. Later results will show that this is

true for the more complicated cardiac phantoms as well.

A
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8.2.1. Convergence Properties

Even though the displacement vectors were fairly large with respect to the voxel size

for the simulations using the ellipsoidal phantom, convergence was possible without using

a multi-resolution approach. Recall that the cost function minimization procedure consists

of two loops: an outer loop, where a Taylor series linear approximation is made of the

deformed volume, and then an inner loop, which uses a conjugate gradient approach to

minimize the error criterion with respect to the linearly approximated deformation field. In

Appendix A, we showed how the cost function could be expressed in terms of a linear

equation in matrix form, . A conjugate gradient solution to a set of linear equa-

tions like this is guaranteed to converge in at mostM iterations, whereM is equal the rank
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Figure 8-6. Strain Energy for Incompressible Stretch

Incompressible flow field (a), and the analytically calculated strain energy verses Pois-
son ratio (b - solid line). The minimum strain energy is closer to 0.4 rather than the
expected 0.5. This may explain why the motion estimation algorithm performs best
using a similar Poisson ratio (c - solid line). In contrast, for the compressible deforma-
tion, (dashed line in (b) and (c)), the minimum analytical strain energy exists at zero.
Likewise the motion estimate algorithm performs best for a zero Poisson ratio.
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of A [81]. Here, even though is a by matrix for a volume with dimen-

sions, , it is found that the algorithm converged relatively quickly, as shown in

Figure 8-7. The plot on the left shows the convergence of the inner loop. In this loop, the

current motion field has been used to calculate the current deformation volume, and the

algorithm calculating the best delta motion field which minimizes the cost function with

respect to the Taylor approximation of the deformation field. Then in the outer loop, this

delta motion field is added to the current motion field, and a new deformation volume is

computed and the process repeats. We see in the right graph that the outer loop converges

very quickly; however each time the delta flow field is added, it is seen that the residual

error in the inner loop jumps up, then eventually converges to a lower value. Typical pro-

cessing time to compute 20 outer iterations for the 64× 64 × 16 voxel ellipsoid data sets

was 400 seconds on an SGI R10000 processor running at 225 MHz.

8.3. Small Displacement Verses Large Displacement Model Effects

Thus far, the motion estimation results presented on the ellipsoid phantom have all

used the infinitesimal strain energy model (small displacement). It turns out that for this

case of simple expansion along one axis, and contraction along another, a motion field gra-

dient results with few cross terms. For both the infinitesimal and finite displacement strain
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Figure 8-7. Algorithm Convergence Properties

A conjugate gradient minimization implementation of the inner loop usually con-
verged within 5-15 iterations. The outer loop also converged relatively quickly, typi-
cally requiring some 5-20 iterations.
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energy models, the only non-zero strain components are the diagonal components, and

. We should therefore not expect a great difference between the results of the motion

estimation algorithm using the finite strain energy model or the infinitesimal model, and in

fact, this was found to be the case. However, it has been demonstrated that for typical

deformations of the heart, the infinitesimal approximation induces large errors in strain

estimates. It is yet to be determined as to whether or not these inaccuracies instrain values

are important for astrain energy-based regularization used by a motion estimation algo-

rithm.

To study this question, we will utilize the more complex deformations exhibited by the

MCAT and prolate spheroid phantoms. For this experiment, each phantom was still mod-

eled as a single isotropic object, but the regularization constraint was allowed to be either

the small displacement strain energy from Equation 6-18, or the finite displacement strain

energy defined in Equation 6-19.
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Figure 8-8. Strain Energy Model Comparison

The results of the motion estimation algorithm on the MCAT phantom using the infini-
tesimal and the small displacement strain energy models are shown here. For all cho-
sen values of the Poisson ratio, the finite displacement model appears to perform
better.



72

Because the conjugate gradient technique could not be used to minimize the finite dis-

placement version, the nonlinear successive over-relaxation (NLOR) technique was used

to minimize the cost function for both strain energy models. It was found that this minimi-

zation technique was more prone to local minima, especially when initialized with a

motion field of zero and when large deformations were present. This problem occasionally

persisted even when using a multi-resolution approach. To solve this issue, the conjugate

gradient technique and the infinitesimal strain model was first used to obtain an initial

motion estimate, since this technique was found to be much less prone to local minima. The

initial estimate was then used as an starting condition for the NLOR technique. Using this

hybrid minimization technique produced reliable results more quickly.

Results using the MCAT phantom may be seen in Figure 8-8. For each strain energy

model, the motion estimation algorithm was run for a range of Poisson ratios between zero

and 0.5. Again, the figure of merit that was used to compare the results was the sum of

squared differences between the reference volume and the warped volume. For all the

chosen values of the Poisson ratio, the finite displacement strain energy model is superior.
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Figure 8-9. Strain Energy Model Comparison - FEM Phantom

Just as was the case for the MCAT phantom, the finite displacement strain energy
model allowed the motion estimation algorithm to obtain results superior to results
obtained with the infinitesimal strain energy function. Both the estimated motion field
and deformed volumes are less in error using the finite displacement model.
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A similar result is obtained if we use the prolate spheroid finite element model. For this

case we compare both the estimated and known flow fields as well as the difference

between the deformed and reference volumes. Results are seen in Figure 8-9.

8.4. Sampling Effects

The results of the deformation algorithm showing some of the effects of different sam-

pling techniques are shown in Figure 8-10. The motion estimation algorithm was applied

to the MCAT phantom using both a backward sampling and the forward sampling tech-

nique and a strain energy regularization allowing a moderate amount of compression. The

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8-10. Sampling Effects

Deformed MCAT Images (noiseless case). Deformed source volume using for-
ward (a) verses backward sampling (b) are both warped to match the reference
quite well, but voxel intensities are closer to being conserved in the forward sam-
pling case. Comparison of the flow magnitude for the forward (c) and backward
sampling (d) shows that the backward sampling technique permits concentration
of motion along the edges despite an incompressibility constraint in the formula-
tion (see arrow). This results in a less uniformly sampled source image. Note that
the overlay of the source edge map on the forward magnitude image(e) and the
edge map of the reference image on the backward magnitude (d) show non-zero
motion outside the cardiac boundaries, but since the outside voxels are zero-val-
ued, they do not adversely affect the warp.
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image matching term was also weighted fairly heavily so that the algorithm would be

attempt to match the deformed volume to the reference even if the motion field because

somewhat physically implausible. Both cases show that the heart at systole in the source

volume can be warped to result in a image matching the reference image at diastole fairly

well. The important distinction here is that the normalized forward mapping technique

comes considerably closer to conserving voxel intensities of the source volume. If the grey

level of all voxels in the volume are summed, it is seen that the volumes displayed in

Figure 8-10a come close to conserving the sum (reference grey sum = 9091, deformed vol-

umes a sum = 8995), whereas for the backward sampled volume Figure 8-10b the differ-

ence is larger (voxel grey sum = 8718). Additionally, a close examination of the

corresponding motion magnitude image, (Figure 8-10d, f), shows that despite an incom-

pressibility constraint in the matching criteria, the backward sampling technique allows a

greater concentration to be sampled from the edges of the ventricle walls, and allows the

central portion of the walls to be undersampled. In contrast, the flow magnitude for the for-

ward sampling case (c,e), shows a more uniform appearance indicating that the voxels

from the source image are more uniformly distributed into the deformed volume.

The figure also points out in that the highest flow magnitude for the forward sampling

occurs in the portion of the volume corresponding to the shape of the heart in the source

(e), whereas for the backward sampling, the motion magnitude is effectively showing the

motion at the vector “heads” and are thus concentrated at the voxels corresponding to the

heart shape in the reference volume. Note that for both the forward and backward sampling

cases, regions outside the boundaries of the heart have non-zero motion magnitudes.

Though these vectors may not represent true motion of material adjacent to the cardiac

walls, the voxel values of this material in PET imagery are close to zero, so they do not

adversely affect the deformed image.

8.5. Piece-wise Isotropic Strain Energy Results

It has been demonstrated in the results thus far that by more closely modeling the mate-

rial properties for an isotropic material, the motion estimation algorithm can better estimate

the true motion field. Since we know that cardiac tissue is nearly incompressible, it would
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seem that the best results could be obtained using a relatively high Poisson ratio. However,

this is complicated by the fact that the total voxel intensity in the region of the blood pool

is not conserved. We may actually obtain worse results by modeling the entire volume as

an incompressible one. Results using the prolate spheroid model confirm this. Figure 8-11

show the magnitude of the true motion field along with the estimated motion field magni-

tude for the case where the whole volume was considered fairly incompressible (Poisson

ratio=0.45), and where the whole volume was considered very compressible (Poisson

ratio=0.1). It is seen that because the area inside the cardiac phantom “cup” is not con-

served, the incompressible model attempts to create a large flow magnitude for material

exitting the cup, which is in conflict with the true motion field. Conversely, when the

incompressiblity penalty is relaxed, then the estimated motion is more correct.

Figure 8-11. Motion Flow Error Due to Material Mismatch

Though the cardiac tissue in the prolate spheroid phantom was modeled as incom-
pressible, the blood pool is highly divergent. Therefore using an isotropic incompress-
ible material model in the motion estimation algorithm produced large errors in the
motion field estimate. This is especially apparent at the opening of the phantom “cup.”
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Therefore it would seem that if we wish to effectively model the material properties of

the heart, we need at least two different material assumptions, a fairly incompressible

model for cardiac tissue, and a compressible model for the blood pool and possibly other

adjacent tissue. This was carried out by using the segmented source volume for the prolate

spheroid phantom as a mask, and generating a variable volume for each of the Lamé con-

stants, and . A comparison of the results for this phantom with the isotropic and piece-

wise isotropic models is seen in Figure 8-12. Differences in the image quality are difficult

Figure 8-12. Isotropic vs. Piece-wise Isotropic Model - Noise Free

Assuming the entire volume is a piece of isotropic incompressible media can lead to
large errors in the estimated motion when portions of the field do not satisfy this
assumption. Using a piece-wise model where the cardiac tissue as modeled as incom-
pressible, and the background as very compressible gives better results.
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to perceive for comparing the two deformed volumes; however, there is a dramatic differ-

ence in the accuracy of the estimated motion fields. The quantitative difference measures

in the figure represent the squared image difference between the deformed and reference

volumes, and the squared error between the magnitude difference of the true and estimated

flow field. A similar behavior is seen when we compare the results of the prolate spheriod

phantom where additive Gaussian noise has been added to both the source and reference

volumes. Seen in Figure 8-13, both the accuracy of the deformed volume and the estimated

Figure 8-13. Isotropic vs. Piece-wise Isotropic - Noisy Case

When noise is added to the prolate spheroid model, both models are able to obtain rea-
sonable estimates of the deformed volume which match the reference shape. Just as in
the noise-free case, the piece-wise isotropic results are superior, especially when com-
paring the squared magnitude difference of the estimated and true motion fields.
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motion field are better using the anisotropic model. Here the image difference measure was

made with respect to the original (noise-free) reference volume.

The MCAT phantom also shows improvement using the piece-wise isotropic model.

Again, for this case, the segmented cardiac tissue in the source volume was used as a mask

to define the variable volume of Lamé constants. For the isotropic model, a uniform Pois-

son ratio of 0.45 was used; for the piece-wise isotropic model, a Poisson ratio of 0.45 was

used for the cardiac tissue only, and the background ratio was set to zero. The results are

presented in Figure 8-14. Again the quantitative figure of merit used to judge the results is

Sq. Error= 843
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Isotropic
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Piece-wise Isotropic
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Figure 8-14. MCAT - Isotropic vs. Piece-wise Isotropic

Results for both the noisy-free and noisy cases using the MCAT phantom reveal that
the deformed error obtained using the piece-wise isotropic model are considerably bet-
ter than the uniform model. Modeling the divergent blood pool as incompressible
appears to be especially harmful when the divergent region has closed boundaries, as is
the case here. Dotted lines represent the edges of the reference volume.
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the squared difference between the deformed and reference volumes. The results show

even more dramatically than did the prolate spheroid model that the anisotropic model pro-

duced superior results. Perhaps this is due to the fact that the blood pool in this case is com-

pletely enclosed by the cardiac tissue. Therefore, trying to use an isotropic incompressible

model for this region was even more damaging, as the restraining forces made it difficult

for the source volume blood pool to expand to match the reference volume.

A realistic noisy version of the data set was also created by first projecting the model

to form noise-free sinograms, and then using these perfect sinograms to obtain a set of sta-

tistically sampled sinograms with Poisson statistics, as is standard with simulations of PET

data. (note: Poissonrandom variablesare unrelated to the Poissonratio discussed thus far).

These noisy sinograms were then reconstructed to form a set of noisy images. It is seen in

the same figure that when using this noisy data set, the algorithm is still successful in esti-

mating the motion, and that the anisotropic version is superior to the isotropic model.

8.6. Motion Compensation Improvement

The ultimate application for the motion estimation algorithm described in this disser-

tation is not to obtain the motion field for its own sake, but rather is that it can be used to

create a composite data set with less motion blur. Figure 8-15 gives an example of the prin-

ciple of the motion compensation, and its desired effect. In the top row, we see the noisy

version of the MCAT phantom at end diastole. This is the volume we will call the refer-

ence. The source volume is the phantom at end systole shown in the second row. The next

row represents the result of summing the two volumes without motion compensation.

Obviously, because of the dramatic shape changes between diastole and systole, the result

of this addition is a degraded data set with considerable motion blur. If instead, we first

deform the source volume to match the shape of the reference using the anisotropic motion

estimation algorithm, and then add the two together, we obtain the motion compensated

data set in the bottom row. Here, we have removed most of the motion blur, and because

we have effectively doubled the number of PET counts in the composite volume, the con-

trast to noise ratio is better than in just the reference volume alone.
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This figure points to an application desired in the analysis of real cardiac PET data.

Often the whole point of acquiring a cardiac PET study is to visualize which parts of the

heart are healthy, and which parts are not. Regions of damaged cardiac tissue are usually

characterized by nonuniform uptake patterns, such as the defect seen in the MCAT phan-

tom. It is seen how the uncompensated (direct) sum of the diastole and systole volumes

blurs the resolution of the defect, whereas it is more readily apparent in the motion com-

pensated sum.

Figure 8-15. MCAT - Motion Compensation Example

Noisy versions of the end diastole volume (top row) and the end systole volume (2nd
row) for the MCAT phantom. If these are added together directly, considerable motion
blur results, and the resulting volume is of less overall quality than either of the indi-
vidual images. If instead, the systole volume is first warped to match diastole, and then
added, the resulting composite has little motion blur and better contrast to noise prop-
erties.
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Direct Sum
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8.7. Results using Real Data

Now that the phantoms have demonstrated the fundamental behavior of the motion

estimation algorithm using a piece-wise isotropic strain energy model, we may present

examples of how it works with actual gated cardiac PET data. Figure 8-16 shows three

Figure 8-16. Human PET Data - Warping End Systole

Two 100 msec time frames from a human gated PET sequence representing the heart
shape at end diastole (top) and end systole (2nd row). A thesholded version of the sys-
tole volume is used as a mask so that the elasticity of this source volume could be mod-
eled anisotropically. The result of warping the source volume to match the reference is
seen in the bottom row. The shape of the heart in this warped volume matches the
shape at end diastole, yet the voxels have been derived from a realistic elastic warp of
the systole data set.

Transverse Coronal Sagittal

Reference

Source

Mask

Warped
Source

End
Diastole

End
Systole
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image slices through two cardiac PET volumes which represent the shape of the heart at

end diastole and at end systole. These frames were obtained using 100 msec gating inter-

vals. From the rather dramatic shape difference seen between the top two rows, it is obvi-

ous that a direct sum of the two frames would introduce considerable motion blur. To

reduce this blur, we declare the end diastole data set the reference volume and warp the

systole data set so that the shape of the heart matches the reference in both volumes. A

mask volume is first defined using a simple thresholding operation on the systole. Elastic

properties within this mask are modeled as highly incompressible (Poisson ratio=0.45).

For the other regions in the background of the volume, the Poisson ratio is set to zero. The

deformed volume obtained using the motion estimation scheme with anisotropic material

assumptions is shown in the bottom row of the figure. It can be seen that the shape of the

heart matches the end diastole data set quite well, though all voxels values were derived

from the source volume.

Figure 8-17. Human PET Data - Summing Comparison

Summing end diastole with the end systole data set results in a volume much like an
ungated cardiac PET acquisition. Blurring is proportional to the total motion. By first
warping the systole data set to match the reference volume, however, the data can be
recombined with minimal motion blur.

Transverse Coronal Sagittal

End Diastole

End Diastole
+

Warped
Systole

+
End Systole
(no motion
correction)
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Results of summing the cardiac gates with and without motion compensation are seen

in Figure 8-17. The top row shows a simple sum of the end diastole and end systole vol-

umes. This volume is similar to the images one would obtain in an ungated cardiac

sequence. Because voxels at the same locations in the two volumes do not correspond to

the same piece of tissue, the motion blur that is introduced by a direct sum is proportional

to the amount of motion present. In contrast, the results of the motion-compensated sum is

Figure 8-18. Human PET Data - Second Subject

Results using data from a different cardiac study are presented. Again, the end systole
data set can be warped to match the shape of the end diastole data set. By adding the
motion compensated volume with the reference, noise properties of the composite data
set are improved over the reference alone.

Transverse Coronal Sagittal

End Diastole

End Diastole
+

Warped
Systole

End Systole

Warped
Systole
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seen in the bottom row. Here the systole volume is first warped to match the heart shape at

end diastole, and then added. The heart walls appear thinner because of less motion blur,

and details within the walls are easier to perceive. Because the voxel sum in this composite

motion compensated volume represents a sum from corresponding locations in the heart,

the contrast to noise properties are improved.

Similar results are presented from another cardiac study in Figure 8-18. Again, consid-

erable heart wall motion is seen between the two 100 msec frames at end diastole and end

systole. Just like in the first example, the systole data set was thresholded to obtain a mask

used to described the piece-wise isotropic elastic model. Results of deforming the systole

volume via the motion algorithm are shown in the third row. Note that by comparing the

fine details in the images between the first three rows, it is seen that the warped volume

matches the shape of the reference, however, the algorithm did not introduce features that

could not be “stretched” from the source systole data set. The motion corrected composite

volume, shown in the bottom row, therefore is a faithful representation of the complete

data set.

It is noted that both the source and reference volumes used in the previous example and

shown in Figure 8-16 were smoothed considerably using a standard 3D Gaussian spatial

filter. Such smoothing is sometimes necessary for the deformable motion algorithm to pro-

duce an accurate estimation of the motion field. Since the desired outcome of the motion

compensation algorithm is a highly resolved composite volume, it may be preferable to

reduce the amount of spatial smoothing, and rely on the improved voxel statistics and

motion blur reduction in the composite volume to attain better contrast to noise properties.

One approach to achieving this goal for extremely noisy data sets is to use a smoothed ver-

sion of the source and reference volumes to obtain an accurate motion field estimate, and

then use this motion field on the unsmoothed data sets. In this manner, we obtain a com-

posite volume with little spatial blurring due to the Gaussian smoothing filters, yet most of

the blur due to motion has been removed.

An example of this is seen in Figure 8-19. Here, the same end diastole and end systole

volumes used in the previous example, but with considerably less smoothing are seen in
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the top two rows of the figure. Again the end systole data set is warped to match the dias-

tole volume, but this time the motion field which is used is the one that was the result of

matching the smoothed versions of the data. The result of summing this warped volume

with the reference is shown in the bottom row. It is seen that this motion compensated sum

appears less noisy than the diastole volume alone, and it has much less motion blur than

would be present if the diastole and systole volumes were summed directly. Also, the com-

posite image is more spatially resolved than the case from Figure 8-17 because the raw data

volumes were smoothed much less.

Figure 8-19. Human PET Data - Summing With Less Smoothing

For extremely noisy cases, a motion field may be computed using source and reference
volumes that have been smoothed considerably. This motion field may then be used to
recombine the unsmoothed data sets. By this method, contrast to noise properties may
be increased in the composite image with minimal spatial blurring not only due to
motion artifacts, but also due to the intrinsic blurring properties of image processing
filters.

End Diastole

End Diastole
+

Warped
Systole

End Systole

Transverse Coronal Sagittal
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Chapter 9

9Conclusions

9.1. Discussion

In the deformation of a volume to match a reference data set, there is always a balance

between the weight of the image matching constraints and the regularization constraints.

The motion estimation problem based on only an image matching constraint is ill-posed.

For any pair of source and reference volumes, there are numerous motion fields that can

be used to produce a deformed volume identical to the reference volume. It is therefore the

function of the regularization constraints to prevent physically unrealizable motion fields.

Past techniques have used general smoothness criteria on the motion field to implement a

regularization that would prevent unrealistic warps. A problem with this approach is that

it is difficult a priori to have any idea what appropriate values for the smoothing parame-

ters should be, and how heavily they should be weighted relative to the image matching

constraints. In the deformation of real PET data sets, where considerable statistical noise

is present, there is always the danger of weighting the image matching terms too greatly so

that uncorrelated “hot spots” in the data sets are matched even though they do not originate

from the same segment of cardiac tissue. The motivation for this work was to incorporate

a more realistic elastic model into the regularization constraint so that this term could be

weighted more heavily, and thus would prevent solutions with physically implausible

motion fields.
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It was shown that use of a linear elastic material model led to weighting terms in the

regularization function that had intuitive meanings. For example, the Poisson ratio is a

measure of the material compressibility, and for physical materials this quantity is limited

to a very restrictive range of values. When the motion field smoothness and divergence-

free criteria of other authors are viewed in terms of this model, it is recognized that some

parameter weightings are not physically possible in the real world, and therefore are prob-

ably not optimal for use as a regularization constraint for the motion estimation problem.

The results presented in this dissertation using phantom data indicate that a better mate-

rial model leads to better motion estimation. For isotropic materials exhibiting an incom-

pressible stretch, it was shown that an algorithm using a regularization with little penalty

for compressive motion fields was less able to accurately estimate the true motion. Simi-

larly, if the true deformation was compressible, and the motion estimation algorithm made

the opposite assumption, then results would be degraded as well.

Some past deformable motion techniques have made use of material models, but few

have recognized the facts that biological tissue deforms with large-distance deformations,

and that in a typical biomedical 3D volume, there is seldom one tissue present with uniform

elasticity properties. This is certainly true in imagery of the heart. The left ventricle

deforms considerably during the cardiac cycle, indisputably more than the infinitesimal

approximation required by some linearly elastic material properties. Also, within the field

of view of a typical cardiac study are not only tissue of the myocardium, but also the blood

pool within the ventricles, lung air space and bone. These different materials have drasti-

cally different elastic properties. Therefore it is no surprise that the finite displacement

strain energy function was found to perform better than the strain energy function using the

infinitesimal approximation. It is also not surprising that the piece-wise isotropic model

performed better than the isotropic material model given the large difference in material

properties.

Compensation for contractile motion blur in cardiac PET was the motivation for devel-

opment of this deformable motion estimation algorithm. With this application in mind, the

forward sampling technique was formulated so that a sum of a reference and a deformed
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source volume would represent a contribution from every voxel in the original volumes.

The validation results carried out on phantoms and the preliminary results obtained on real

cardiac PET data indicate that this technique shows promise for use as a reliable motion

compensation method. It is acknowledged, though, that the motion of the heart in actual

gated PET data is complex, with noise properties not yet completely modeled. Consider-

ably more testing is required to insure that proper correspondence is made between all

voxels before image summing takes place, and that the composite image does not produce

misleading artifacts.

The choice to use an optical flow-based method rather than a surface model or other

high-level model is based partially on the assumption that there is information present in

the voxel data which is lost by preprocessing efforts such as edge detection or other high-

level parameterizations. Though deformations using higher level descriptions of the object

geometry can be very powerful techniques to obtain accurate volume deformations, their

success is extremely dependent on the initial feature extraction step. We desire to delay any

step requiring an accurate identification of cardiac landmarks. The only preprocessing step

required in the described algorithm is a rough segmentation of the cardiac tissue from

background tissue. Recognition of the orientation or shape of the heart or identification of

specific features is not required. Absolute accuracy of the segmentation should not be that

critical either. It appears that the main effect of introducing a nonuniform elasticity

description for the myocardial tissue and blood pool was to allow the compressible blood

pool to be described differently so that it would not bias the overall estimated motion field.

That is, there just needs to be some provision for motion field divergence somewhere

within the space of the blood pool. Segmentation errors of just a few voxels from the abso-

lute myocardial-blood pool boundary should therefore not significantly bias the resulting

estimated motion field.

Because a 3D optical flow-based method is fairly expensive in terms of computational

requirements, we would not like to rule out in the future the use of simpler regularization

parameterizations or an image matching criterion based on a sparser set of features. There

may be such parameterizations or features that capture essentially the same information as

the elasticity model and voxel-based similarity measure used by the algorithm described
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here. If so, it would make sense to use these measures, since they could achieve the same

results at considerably less computational expense. At this point, though, we feel it is still

fruitful to proceed along with the general framework that the optical flow algorithm pro-

vides, and to use it to answer further research questions about deformable modeling for fea-

ture tracking in biomedical images.

9.2. Future Work

The results obtained thus far appear to indicate that better motion estimations can be

obtained by more accurately modeling the material properties of the objects captured in the

image data. A natural extension to the work described in this dissertation is therefore inves-

tigation of models that characterize the tissue within the field of view in a cardiac PET

study even more accurately. For isotropic media, it was found that the finite displacement

material model was superior to the infinitesimal model. This model has not yet been tested

in the piece-wise isotropic version of this algorithm. It is likely that this improved model-

ing of cardiac tissue would improve the motion estimation algorithm, however, it is

unknown whether the improvement would be worth the extra computational burden. It is

doubtful that the same improvement would be seen as was seen by adding the nonuniform

elasticity feature to the algorithm, given the extreme difference in material properties

between the non-conserved blood pool and the nearly incompressible cardiac tissue.

Along these same lines of development, it may be fruitful to consider some of the other

non-linear strain energy models that have been developed using empirical testing on car-

diac tissue. An obstacle to this approach is that it would require considerably more prepro-

cessing and pattern recognition. The nonlinear strain energy models for cardiac tissue that

was proposed by Nielsen, et. al. [66] is considerably different at directions normal to the

surface of the tissue than in directions transverse. Therefore, not only would the heart need

to be accurately segmented, but the orientation of the myocardial tissue would also require

recognition. Incorporation of additional modeling information, such as the influence of

myocardial muscle fiber orientation would require additional recognition as well. Not only

would the cardiac tissue have to be identified, and the orientation determined, but the abso-

lute orientation with respect to a pre-defined template would also have to be ascertained.
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Accurate characterization of the material is just one facet of possible improvements to

this motion estimation algorithm. For motion of tissue due to the contractions of the heart,

there is the added advantage that the motion between two time frames is not isolated, but

part of a predictable continuous cycle. It is obvious that considerable information is lost by

only considering the data in two image volumes when trying to estimate the total motion.

The material model used in this dissertation emphasized continuity in the three dimensions

of space. The next obvious smoothness constraint to incorporate is smoothness in time. We

have investigated one implementation of four-dimensional utilization of information in a

previously published paper [48]. In this paper, the information from adjacent time frames

was used to calculate apredictionmotion field, and this motion field was incorporated into

the overall cost function for the motion estimation problem. That approach had the one dif-

ficulty that in order to provide an initial prediction field, the algorithm needed to be run

successfully using only the spatial continuity constraints. Alternate approaches have been

proposed that would incorporate four-dimensional continuity constraints more naturally

and do not suffer from the initialization problem as does the prediction field method [25,

56,58]. Approaches like these warrant further investigation.

A detailed study of the effects of noise is also needed. Most of the results obtained in

this dissertation were obtained using noise-free data. For those datasets, it was advanta-

geous in a motion estimation algorithm to accurately model the elasticity of the material

being imaged. This characteristic appears to follow as well for the few noisy cases we

tested. On the other hand, a typical method of successfully dealing with noisy data in gen-

eral has been to apply greater smoothing to the data. Analogously, it may be advantageous

to use a material model with slightly “oversmoothed” weighting parameters to obtain

better motion estimations for extremely noisy data. The relative weighting of the image

matching and regularization constraints also needs to be studied for a wider range of noise

characteristics.

One other facet that has been neglected in the modeling of the data thus far is the spatial

blurring function associated with the peak spatial resolution of the PET scanner. Given that

the cardiac wall thickness varies by almost a factor of two between end diastole and end

systole, the apparent thickness of the cardiac walls and voxel intensity in the center of the
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walls could be affected considerably in scanners with limited peak spatial resolution. This

is a factor that may need to be included in the motion estimation and volume warping cal-

culation.

The results presented in this dissertation have been restricted exclusively to cardiac

PET data or phantom data that was emulating characteristics from this particular imaging

modality. It may be fruitful to apply the anisotropic approach towards the analysis of MR

or CT images of the heart or any other type of data set that could be better modeled using

non-uniform material properties. Nearly all the same assumptions that were made regard-

ing the characteristics of PET data sets would apply to voxel data sets from other medical

imaging modalities. For example, analysis of motion in data sets of the spine, which com-

bine the rigid motion of the vertebra with the non-rigid motion of adjacent muscle tissue,

could benefit from this anisotropic approach. Matching of brain data sets could be

enhanced as well, especially in cases where the relative size of the brain ventricles differs

radically. Here, just as for the case of modeling the heart ventricles between diastole and

systole with an isotropic, incompressible assumption, warping two brains with greatly dif-

fering ventricles would be difficult unless a fairly compressible material model was

assumed. Better matches might be obtained by modeling the ventricles as compressible

material, and the rest of the brain tissue as incompressible material.

Finally, because the ultimate application of this technique is the summing of real car-

diac data acquired from human subjects, validation efforts using not only phantom data,

but also actual data from clinical PET studies must be carried out. A problem with such

validations using real data has always been the difficulty in establishing the ground truth,

however, the emergence of other imaging techniques, such as tagged MRI or phase con-

trast MRI may provide such data sets for accurate evaluation of algorithm performance.
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Appendix A

AMinimization Via the Calculus of
Variations

A.1. Euler-Lagrange Equations

The calculus of variations is a technique useful for determining extreme values of inte-

grals whose integrands consist of unknown functions. For expressions calledfunctionals

that are functions of functions, the calculus of variations is a procedure for finding a par-

ticular function where the functional has a stationary value for small variations about that

function. Consider a functional consisting of an integral of the following form:

(A-1)

where depends upon an unknown function, and its derivative, . If is a

function that results in the integral at an extrema, then small variations in will not change

the extrema much. More exactly, if we define some test function, , and replace

with , then the functional will be stationary, that is, it is at an extremuum if

and only if for all test functions, ,

(A-2)
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It can be shown [38] that this condition is reached if the following equation, called anEuler

equation, is satisfied:

(A-3)

subject to the Dirichlet boundary condition, where we require all test functions, ,

equal zero on the boundary of volume in which the integral is being evaluated.

Consider now the cost function from Chapter 4-21, expressed here as an integral equation

(A-4)

where represents the image volume. Let us call the integrand of this equation,

. Then we may use the multidi-

mensional generalization of the calculus of variation to obtain an extremuum. The cost

function may therefore be minimized by solving the following Euler equations:

(A-5)
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Taking for example, the first of these equations, we have

(A-6)

Similar relations can be found for the last two Euler equations so that the following three

partial differential equations already given in Chapter 4 may be obtained:

(A-7)

(A-8)

(A-9)

Dirichlet boundary conditions are assumed in the formulation, hence the motion field is

assumed to equal zero on the boundaries of the image volume.

A.2. Conjugate Gradient Solution

The partial differential equations expressed in the previous section may be written in

matrix form as

(A-10)

where is a sparse by matrix for a volume with dimensions,

. The matrix is block diagonal with 3x3 blocks as follows:
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(A-11)

Likewise,  and  are  column matrices with elements for theith voxel:

(A-12)

and where represents a differential operator implemented using a standard finite dif-

ferencing scheme.

A conjugate gradient scheme is a powerful minimization technique for linear equations

in the form of Equation A-10. That is, if we want to minimize

(A-13)

then the following conjugate gradient recursion can be used to find the minimum [81]:
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Furthermore, when is symmetric, positive-definite, the quadratic form is unneces-

sary, and we may replace with in the recursion. In that case, the norm of the residual,

, which now represents the error we are trying to minimize, is guaranteed to decrease.

A

H A

rn
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